JoPmt's picture
Upload folder using huggingface_hub
c2e8be6 verified
|
raw
history blame
2.16 kB
---
base_model:
- cognitivecomputations/TinyDolphin-2.8-1.1b
- 78health/TinyLlama_1.1B-function-calling
- DaertML/TinyGauss-1.1B
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- cognitivecomputations/TinyDolphin-2.8-1.1b
- 78health/TinyLlama_1.1B-function-calling
- DaertML/TinyGauss-1.1B
---
# TinyEnsemble-3x1.1B-TinyMoE
TinyEnsemble-3x1.1B-TinyMoE is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [cognitivecomputations/TinyDolphin-2.8-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8-1.1b)
* [78health/TinyLlama_1.1B-function-calling](https://huggingface.co/78health/TinyLlama_1.1B-function-calling)
* [DaertML/TinyGauss-1.1B](https://huggingface.co/DaertML/TinyGauss-1.1B)
## 🧩 Configuration
```yaml
base_model: cognitivecomputations/TinyDolphin-2.8-1.1b
gate_mode: cheap_embed
dtype: bfloat16
experts:
- source_model: cognitivecomputations/TinyDolphin-2.8-1.1b
positive_prompts: ["write", "explain", "summarize", "how", "what", "acting"]
- source_model: 78health/TinyLlama_1.1B-function-calling
positive_prompts: ["code", "python", "javascript", "programming", "script", "run", "create"]
- source_model: DaertML/TinyGauss-1.1B
positive_prompts: ["count", "math", "algorithm", "crypto", "logic", "reason"]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "JoPmt/TinyEnsemble-3x1.1B-TinyMoE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```