Joctor's picture
Update README.md
455cc1c verified
---
library_name: transformers
datasets:
- Joctor/cn_bokete_oogiri_caption
base_model:
- Qwen/Qwen2-VL-7B-Instruct
pipeline_tag: image-to-text
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
AI大喜利,简介 https://www.gcores.com/articles/188405
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model_id = "Joctor/qwen2-vl-7b-instruct-ogiri"
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_id, torch_dtype="auto", device_map="auto"
)
# default processer
processor = AutoProcessor.from_pretrained(model_id)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "path/to/image",
},
{"type": "text", "text": "根据图片给出有趣巧妙的回答"},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
https://huggingface.co/datasets/Joctor/cn_bokete_oogiri_caption
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
基础模型:qwen2vl
微调方式:数据量充足,采用SFT微调
微调参数:max_length=1024(短就是好!), num_train_epochs=1, per_device_train_batch_size=1, gradient_accumulation_steps=1
训练设备:10 * 4090D
训练时长:22小时