File size: 28,860 Bytes
1a513fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How can bias testing influence the design and launch of automated
systems?
sentences:
- "reinforce those legal protections but extend beyond them to ensure equity for\
\ underserved communities48 \neven in circumstances where a specific legal protection\
\ may not be clearly established. These protections \nshould be instituted throughout\
\ the design, development, and deployment process and are described below \nroughly\
\ in the order in which they would be instituted. \nProtect the public from algorithmic\
\ discrimination in a proactive and ongoing manner \nProactive assessment of equity\
\ in design. Those responsible for the development, use, or oversight of"
- "the severity of certain diseases in Black Americans. Instances of discriminatory\
\ practices built into and \nresulting from AI and other automated systems exist\
\ across many industries, areas, and contexts. While automated \nsystems have\
\ the capacity to drive extraordinary advances and innovations, algorithmic discrimination\
\ \nprotections should be built into their design, deployment, and ongoing use.\
\ \nMany companies, non-profits, and federal government agencies are already taking\
\ steps to ensure the public \nis protected from algorithmic discrimination. Some\
\ companies have instituted bias testing as part of their product \nquality assessment\
\ and launch procedures, and in some cases this testing has led products to be\
\ changed or not"
- "accuracy), and enable human users to understand, appropriately trust, and effectively\
\ manage the emerging \ngeneration of artificially intelligent partners.95 The\
\ National Science Foundation’s program on Fairness in \nArtificial Intelligence\
\ also includes a specific interest in research foundations for explainable AI.96\n\
45"
- source_sentence: What is the intended use of the systems mentioned in the context?
sentences:
- 'In discussion of technical and governance interventions that that are needed
to protect against the harms of these technologies, panelists individually described
the importance of: receiving community input into the design and use of technologies,
public reporting on crucial elements of these systems, better notice and consent
procedures that ensure privacy based on context and use case, ability to opt-out
of using these systems and receive a fallback to a human process, providing explanations
of decisions and how these systems work, the need for governance including training
in using these systems, ensuring the technological use cases are genuinely related
to the goal task and are locally validated to work, and the need for institution'
- 'part of its loan underwriting and pricing model was found to be much more likely
to charge an applicant whoattended a Historically Black College or University
(HBCU) higher loan prices for refinancing a student loanthan an applicant who
did not attend an HBCU. This was found to be true even when controlling for
other credit-related factors.32
•A hiring tool that learned the features of a company''s employees (predominantly
men) rejected women appli -
cants for spurious and discriminatory reasons; resumes with the word “women’s,”
such as “women’s
chess club captain,” were penalized in the candidate ranking.33'
- systems with an intended use within sensi
- source_sentence: How did the hospital's software error affect the patient's access
to pain medication?
sentences:
- '101
•A fraud detection system for unemployment insurance distribution incorrectly
flagged entries as fraudulent,leading to people with slight discrepancies or complexities
in their files having their wages withheld and taxreturns seized without any chance
to explain themselves or receive a review by a person.
102
•A patient was wrongly denied access to pain medication when the hospital’s software
confused her medica -
tion history with that of her dog’s. Even after she tracked down an explanation
for the problem, doctorswere afraid to override the system, and she was forced
to go without pain relief due to the system’s error.
103'
- "This section provides a brief summary of the problems that the principle seeks\
\ to address and protect against, including illustrative examples. \nWHAT SHOULD\
\ BE EXPECTED OF AUTOMATED SYSTEMS : \n•The expectations for automated systems\
\ are meant to serve as a blueprint for the development of additional technical\n\
standards and practices that should be tailored for particular sectors and contexts.\n\
•This section outlines practical steps that can be implemented to realize the\
\ vision of the Blueprint for an AI Bill of Rights. The"
- "97 A human\ncuring process,98 which helps voters to confirm their signatures\
\ and correct other voting mistakes, is\nimportant to ensure all votes are counted,99\
\ and it is already standard practice in much of the country for\nboth an election\
\ official and the voter to have the opportunity to review and correct any such\
\ issues.100 \n47"
- source_sentence: Which organizations and individuals submitted the documents mentioned
in the context?
sentences:
- "114 and were submitted by the below\nlisted organizations and individuals:\n\
Accenture \nAccess Now ACT | The App Association AHIP \nAIethicist.org"
- "APPENDIX\nPanelists discussed the benefits of AI-enabled systems and their potential\
\ to build better and more \ninnovative infrastructure. They individually noted\
\ that while AI technologies may be new, the process of \ntechnological diffusion\
\ is not, and that it was critical to have thoughtful and responsible development\
\ and \nintegration of technology within communities. Some p anelists suggested\
\ that the integration of technology \ncould benefit from examining how technological\
\ diffusion has worked in the realm of urban planning: \nlessons learned from\
\ successes and failures there include the importance of balancing ownership rights,\
\ use \nrights, and community health, safety and welfare, as well ensuring better\
\ representation of all voices,"
- "26Algorithmic \nDiscrimination \nProtections"
- source_sentence: What types of risks should be identified and mitigated before the
deployment of an automated system?
sentences:
- "APPENDIX\nSystems that impact the safety of communities such as automated traffic\
\ control systems, elec \n-ctrical grid controls, smart city technologies, and\
\ industrial emissions and environmental\nimpact control algorithms; and\nSystems\
\ related to access to benefits or services or assignment of penalties such as\
\ systems that"
- "points to numerous examples of effective and proactive stakeholder engagement,\
\ including the Community-\nBased Participatory Research Program developed by\
\ the National Institutes of Health and the participatory \ntechnology assessments\
\ developed by the National Oceanic and Atmospheric Administration.18\nThe National\
\ Institute of Standards and Technology (NIST) is developing a risk \nmanagement\
\ framework to better manage risks posed to individuals, organizations, and \n\
society by AI.19 The NIST AI Risk Management Framework, as mandated by Congress,\
\ is intended for \nvoluntary use to help incorporate trustworthiness considerations\
\ into the design, development, use, and"
- 'Risk identification and mitigation. Before deployment, and in a proactive and
ongoing manner, poten -
tial risks of the automated system should be identified and mitigated. Identified
risks should focus on the potential for meaningful impact on people’s rights,
opportunities, or access and include those to impacted communities that may not
be direct users of the automated system, risks resulting from purposeful misuse
of the system, and other concerns identified via the consultation process. Assessment
and, where possible, mea
-'
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.8
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.925
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.94
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.98
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30833333333333335
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18799999999999997
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09799999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.925
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.94
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.98
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8955920586775068
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.868345238095238
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8695985052884031
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.8
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.925
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.94
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8
name: Dot Precision@1
- type: dot_precision@3
value: 0.30833333333333335
name: Dot Precision@3
- type: dot_precision@5
value: 0.18799999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.09799999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.8
name: Dot Recall@1
- type: dot_recall@3
value: 0.925
name: Dot Recall@3
- type: dot_recall@5
value: 0.94
name: Dot Recall@5
- type: dot_recall@10
value: 0.98
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8955920586775068
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.868345238095238
name: Dot Mrr@10
- type: dot_map@100
value: 0.8695985052884031
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JoeNoss1998/Noss")
# Run inference
sentences = [
'What types of risks should be identified and mitigated before the deployment of an automated system?',
'Risk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten -\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the potential for meaningful impact on people’s rights, opportunities, or access and include those to impacted communities that may not be direct users of the automated system, risks resulting from purposeful misuse of the system, and other concerns identified via the consultation process. Assessment and, where possible, mea\n-',
'APPENDIX\nSystems that impact the safety of communities such as automated traffic control systems, elec \n-ctrical grid controls, smart city technologies, and industrial emissions and environmental\nimpact control algorithms; and\nSystems related to access to benefits or services or assignment of penalties such as systems that',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8 |
| cosine_accuracy@3 | 0.925 |
| cosine_accuracy@5 | 0.94 |
| cosine_accuracy@10 | 0.98 |
| cosine_precision@1 | 0.8 |
| cosine_precision@3 | 0.3083 |
| cosine_precision@5 | 0.188 |
| cosine_precision@10 | 0.098 |
| cosine_recall@1 | 0.8 |
| cosine_recall@3 | 0.925 |
| cosine_recall@5 | 0.94 |
| cosine_recall@10 | 0.98 |
| cosine_ndcg@10 | 0.8956 |
| cosine_mrr@10 | 0.8683 |
| **cosine_map@100** | **0.8696** |
| dot_accuracy@1 | 0.8 |
| dot_accuracy@3 | 0.925 |
| dot_accuracy@5 | 0.94 |
| dot_accuracy@10 | 0.98 |
| dot_precision@1 | 0.8 |
| dot_precision@3 | 0.3083 |
| dot_precision@5 | 0.188 |
| dot_precision@10 | 0.098 |
| dot_recall@1 | 0.8 |
| dot_recall@3 | 0.925 |
| dot_recall@5 | 0.94 |
| dot_recall@10 | 0.98 |
| dot_ndcg@10 | 0.8956 |
| dot_mrr@10 | 0.8683 |
| dot_map@100 | 0.8696 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 800 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 800 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 20.05 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 116.96 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the purpose of the AI Bill of Rights mentioned in the context?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
| <code>When was the Blueprint for an AI Bill of Rights published?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
| <code>What is the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:-----:|:----:|:--------------:|
| 1.0 | 40 | 0.8784 |
| 1.25 | 50 | 0.8759 |
| 2.0 | 80 | 0.8795 |
| 2.5 | 100 | 0.8775 |
| 3.0 | 120 | 0.8714 |
| 3.75 | 150 | 0.8747 |
| 4.0 | 160 | 0.8746 |
| 5.0 | 200 | 0.8696 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |