File size: 28,860 Bytes
1a513fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How can bias testing influence the design and launch of automated
    systems?
  sentences:
  - "reinforce those legal protections but extend beyond them to ensure equity for\
    \ underserved communities48 \neven in circumstances where a specific legal protection\
    \ may not be clearly established. These protections \nshould be instituted throughout\
    \ the design, development, and deployment process and are described below \nroughly\
    \ in the order in which they would be instituted. \nProtect the public from algorithmic\
    \ discrimination in a proactive and ongoing manner \nProactive assessment of equity\
    \ in design. Those responsible for the development, use, or oversight of"
  - "the severity of certain diseases in Black Americans. Instances of discriminatory\
    \ practices built into and \nresulting from AI and other automated systems exist\
    \ across many industries, areas, and contexts. While automated \nsystems have\
    \ the capacity to drive extraordinary advances and innovations, algorithmic discrimination\
    \ \nprotections should be built into their design, deployment, and ongoing use.\
    \ \nMany companies, non-profits, and federal government agencies are already taking\
    \ steps to ensure the public \nis protected from algorithmic discrimination. Some\
    \ companies have instituted bias testing as part of their product \nquality assessment\
    \ and launch procedures, and in some cases this testing has led products to be\
    \ changed or not"
  - "accuracy), and enable human users to understand, appropriately trust, and effectively\
    \ manage the emerging \ngeneration of artificially intelligent partners.95 The\
    \ National Science Foundation’s program on Fairness in \nArtificial Intelligence\
    \ also includes a specific interest in research foundations for explainable AI.96\n\
    45"
- source_sentence: What is the intended use of the systems mentioned in the context?
  sentences:
  - 'In discussion of technical and governance interventions that that are needed
    to protect against the harms of these technologies, panelists individually described
    the importance of: receiving community input into the design and use of technologies,
    public reporting on crucial elements of these systems, better notice and consent
    procedures that ensure privacy based on context and use case, ability to opt-out
    of using these systems and receive a fallback to a human process, providing explanations
    of decisions and how these systems work, the need for governance including training
    in using these systems, ensuring the technological use cases are genuinely related
    to the goal task and are locally validated to work, and the need for institution'
  - 'part of its loan underwriting and pricing model was found to be much more likely
    to charge an applicant whoattended a Historically Black College or University
    (HBCU) higher loan prices for refinancing a student loanthan an applicant who
    did not attend an HBCU. This was found to be true even when controlling for

    other credit-related factors.32

    •A hiring tool that learned the features of a company''s employees (predominantly
    men) rejected women appli -

    cants for spurious and discriminatory reasons; resumes with the word “women’s,”
    such as “women’s

    chess club captain,” were penalized in the candidate ranking.33'
  - systems with an intended use within sensi
- source_sentence: How did the hospital's software error affect the patient's access
    to pain medication?
  sentences:
  - '101

    •A fraud detection system for unemployment insurance distribution incorrectly
    flagged entries as fraudulent,leading to people with slight discrepancies or complexities
    in their files having their wages withheld and taxreturns seized without any chance
    to explain themselves or receive a review by a person.

    102

    •A patient was wrongly denied access to pain medication when the hospital’s software
    confused her medica -

    tion history with that of her dog’s. Even after she tracked down an explanation
    for the problem, doctorswere afraid to override the system, and she was forced
    to go without pain relief due to the system’s error.

    103'
  - "This section provides a brief summary of the problems that the principle seeks\
    \ to address and protect against, including illustrative examples. \nWHAT SHOULD\
    \ BE EXPECTED OF AUTOMATED SYSTEMS : \n•The expectations for automated systems\
    \ are meant to serve as a blueprint for the development of additional technical\n\
    standards and practices that should be tailored for particular sectors and contexts.\n\
    •This section outlines practical steps that can be implemented to realize the\
    \ vision of the Blueprint for an AI Bill of Rights. The"
  - "97 A human\ncuring process,98 which helps voters to confirm their signatures\
    \ and correct other voting mistakes, is\nimportant to ensure all votes are counted,99\
    \ and it is already standard practice in much of the country for\nboth an election\
    \ official and the voter to have the opportunity to review and correct any such\
    \ issues.100 \n47"
- source_sentence: Which organizations and individuals submitted the documents mentioned
    in the context?
  sentences:
  - "114 and were submitted by the below\nlisted organizations and individuals:\n\
    Accenture \nAccess Now ACT | The App Association AHIP \nAIethicist.org"
  - "APPENDIX\nPanelists discussed the benefits of AI-enabled systems and their potential\
    \ to build better and more \ninnovative infrastructure. They individually noted\
    \ that while AI technologies may be new, the process of \ntechnological diffusion\
    \ is not, and that it was critical to have thoughtful and responsible development\
    \ and \nintegration of technology within communities. Some p anelists suggested\
    \ that the integration of technology \ncould benefit from examining how technological\
    \ diffusion has worked in the realm of urban planning: \nlessons learned from\
    \ successes and failures there include the importance of balancing ownership rights,\
    \ use \nrights, and community health, safety and welfare, as well ensuring better\
    \ representation of all voices,"
  - "26Algorithmic \nDiscrimination \nProtections"
- source_sentence: What types of risks should be identified and mitigated before the
    deployment of an automated system?
  sentences:
  - "APPENDIX\nSystems  that impact the safety of communities such as automated traffic\
    \ control systems, elec \n-ctrical grid controls, smart city technologies, and\
    \ industrial emissions and environmental\nimpact control algorithms; and\nSystems\
    \  related to access to benefits or services or assignment of penalties such as\
    \ systems that"
  - "points to numerous examples of effective and proactive stakeholder engagement,\
    \ including the Community-\nBased Participatory Research Program developed by\
    \ the National Institutes of Health and the participatory \ntechnology assessments\
    \ developed by the National Oceanic and Atmospheric Administration.18\nThe National\
    \ Institute of Standards and Technology (NIST) is developing a risk \nmanagement\
    \ framework to better manage risks posed to individuals, organizations, and \n\
    society by AI.19 The NIST AI Risk Management Framework, as mandated by Congress,\
    \ is intended for \nvoluntary use to help incorporate trustworthiness considerations\
    \ into the design, development, use, and"
  - 'Risk identification and mitigation. Before deployment, and in a proactive and
    ongoing manner, poten -

    tial risks of the automated system should be identified and mitigated. Identified
    risks should focus on the potential for meaningful impact on people’s rights,
    opportunities, or access and include those to impacted communities that may not
    be direct users of the automated system, risks resulting from purposeful misuse
    of the system, and other concerns identified via the consultation process. Assessment
    and, where possible, mea

    -'
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.8
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.925
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.94
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.98
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30833333333333335
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18799999999999997
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09799999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.925
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.94
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.98
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8955920586775068
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.868345238095238
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8695985052884031
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.8
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.925
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.94
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.98
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.8
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.30833333333333335
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18799999999999997
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09799999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.8
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.925
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.94
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.98
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8955920586775068
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.868345238095238
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8695985052884031
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("JoeNoss1998/Noss")
# Run inference
sentences = [
    'What types of risks should be identified and mitigated before the deployment of an automated system?',
    'Risk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten -\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the potential for meaningful impact on people’s rights, opportunities, or access and include those to impacted communities that may not be direct users of the automated system, risks resulting from purposeful misuse of the system, and other concerns identified via the consultation process. Assessment and, where possible, mea\n-',
    'APPENDIX\nSystems  that impact the safety of communities such as automated traffic control systems, elec \n-ctrical grid controls, smart city technologies, and industrial emissions and environmental\nimpact control algorithms; and\nSystems  related to access to benefits or services or assignment of penalties such as systems that',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8        |
| cosine_accuracy@3   | 0.925      |
| cosine_accuracy@5   | 0.94       |
| cosine_accuracy@10  | 0.98       |
| cosine_precision@1  | 0.8        |
| cosine_precision@3  | 0.3083     |
| cosine_precision@5  | 0.188      |
| cosine_precision@10 | 0.098      |
| cosine_recall@1     | 0.8        |
| cosine_recall@3     | 0.925      |
| cosine_recall@5     | 0.94       |
| cosine_recall@10    | 0.98       |
| cosine_ndcg@10      | 0.8956     |
| cosine_mrr@10       | 0.8683     |
| **cosine_map@100**  | **0.8696** |
| dot_accuracy@1      | 0.8        |
| dot_accuracy@3      | 0.925      |
| dot_accuracy@5      | 0.94       |
| dot_accuracy@10     | 0.98       |
| dot_precision@1     | 0.8        |
| dot_precision@3     | 0.3083     |
| dot_precision@5     | 0.188      |
| dot_precision@10    | 0.098      |
| dot_recall@1        | 0.8        |
| dot_recall@3        | 0.925      |
| dot_recall@5        | 0.94       |
| dot_recall@10       | 0.98       |
| dot_ndcg@10         | 0.8956     |
| dot_mrr@10          | 0.8683     |
| dot_map@100         | 0.8696     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 800 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 800 samples:
  |         | sentence_0                                                                         | sentence_1                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 10 tokens</li><li>mean: 20.05 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 116.96 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                       | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the purpose of the AI Bill of Rights mentioned in the context?</code>                                                              | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  | <code>When was the Blueprint for an AI Bill of Rights published?</code>                                                                          | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  | <code>What is the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced  the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP)  was established by the National Science and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_map@100 |
|:-----:|:----:|:--------------:|
| 1.0   | 40   | 0.8784         |
| 1.25  | 50   | 0.8759         |
| 2.0   | 80   | 0.8795         |
| 2.5   | 100  | 0.8775         |
| 3.0   | 120  | 0.8714         |
| 3.75  | 150  | 0.8747         |
| 4.0   | 160  | 0.8746         |
| 5.0   | 200  | 0.8696         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->