emotion_recognition / README.md
JohnJumon's picture
End of training
34195ec verified
|
raw
history blame
2.58 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_recognition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.60625

emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1376
  • Accuracy: 0.6062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 1.3456 0.4813
No log 2.0 40 1.3147 0.5188
No log 3.0 60 1.2345 0.5563
No log 4.0 80 1.2281 0.5625
No log 5.0 100 1.1851 0.5687
No log 6.0 120 1.1911 0.5563
No log 7.0 140 1.1834 0.5813
No log 8.0 160 1.1682 0.5875
No log 9.0 180 1.2359 0.55
No log 10.0 200 1.1850 0.5563
No log 11.0 220 1.1877 0.5687
No log 12.0 240 1.1546 0.5687
No log 13.0 260 1.1694 0.5813
No log 14.0 280 1.2401 0.5875
No log 15.0 300 1.1899 0.575

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1