metadata
license: apache-2.0
tags:
- generated_from_trainer
language: en
widget:
- text: My name is Scott and I live in Columbus. I work at the Hospital.
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: albert-base-v2-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9252213840603477
- name: Recall
type: recall
value: 0.9329732113328189
- name: F1
type: f1
value: 0.9290811285541773
- name: Accuracy
type: accuracy
value: 0.9848205157332728
albert-base-v2-finetuned-ner
This model is a fine-tuned version of albert-base-v2 on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0626
- Precision: 0.9252
- Recall: 0.9330
- F1: 0.9291
- Accuracy: 0.9848
Model description
More information needed
limitations
Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
How to use
You can use this model with Transformers pipeline for NER.
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/albert-base-v2-finetuned-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Scott and I live in Ohio"
ner_results = nlp(example)
print(ner_results)
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 220 | 0.0863 | 0.8827 | 0.8969 | 0.8898 | 0.9773 |
No log | 2.0 | 440 | 0.0652 | 0.8951 | 0.9199 | 0.9073 | 0.9809 |
0.1243 | 3.0 | 660 | 0.0626 | 0.9191 | 0.9208 | 0.9200 | 0.9827 |
0.1243 | 4.0 | 880 | 0.0585 | 0.9227 | 0.9281 | 0.9254 | 0.9843 |
0.0299 | 5.0 | 1100 | 0.0626 | 0.9252 | 0.9330 | 0.9291 | 0.9848 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.8.1+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0