dyu-fr-t5-small_v8 / README.md
JuliusFx's picture
Training in progress epoch 99
02ba244
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_keras_callback
model-index:
  - name: JuliusFx/dyu-fr-t5-small_v8
    results: []

JuliusFx/dyu-fr-t5-small_v8

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.8793
  • Validation Loss: 2.9071
  • Epoch: 99

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
3.1481 3.2663 0
3.0205 3.2024 1
2.9712 3.1559 2
2.9209 3.1465 3
2.8848 3.1125 4
2.8512 3.1014 5
2.8239 3.0771 6
2.7965 3.0641 7
2.7743 3.0431 8
2.7505 3.0327 9
2.7325 3.0072 10
2.7153 3.0060 11
2.6904 2.9950 12
2.6750 2.9895 13
2.6554 2.9700 14
2.6400 2.9632 15
2.6220 2.9534 16
2.6059 2.9505 17
2.5913 2.9536 18
2.5779 2.9485 19
2.5624 2.9349 20
2.5469 2.9307 21
2.5341 2.9224 22
2.5223 2.9114 23
2.5093 2.8996 24
2.4995 2.9065 25
2.4855 2.8974 26
2.4706 2.8926 27
2.4589 2.9075 28
2.4521 2.8921 29
2.4380 2.9055 30
2.4243 2.8930 31
2.4131 2.8871 32
2.4065 2.8894 33
2.3911 2.8890 34
2.3833 2.8757 35
2.3724 2.8778 36
2.3628 2.8874 37
2.3556 2.8687 38
2.3441 2.8653 39
2.3321 2.8794 40
2.3203 2.8827 41
2.3118 2.8778 42
2.3027 2.8955 43
2.2903 2.8778 44
2.2821 2.8751 45
2.2760 2.8655 46
2.2592 2.8763 47
2.2534 2.8643 48
2.2466 2.8716 49
2.2363 2.8728 50
2.2279 2.8688 51
2.2225 2.8822 52
2.2133 2.8690 53
2.2025 2.8551 54
2.1937 2.8605 55
2.1863 2.8441 56
2.1776 2.8576 57
2.1732 2.8435 58
2.1640 2.8448 59
2.1530 2.8422 60
2.1438 2.8640 61
2.1360 2.8648 62
2.1302 2.8689 63
2.1213 2.8787 64
2.1170 2.8816 65
2.1016 2.8655 66
2.0986 2.8713 67
2.0892 2.8776 68
2.0876 2.8912 69
2.0722 2.8901 70
2.0678 2.8549 71
2.0607 2.8883 72
2.0544 2.8681 73
2.0481 2.8637 74
2.0358 2.8739 75
2.0347 2.8705 76
2.0232 2.8724 77
2.0225 2.8619 78
2.0096 2.8687 79
2.0038 2.8561 80
1.9969 2.8560 81
1.9873 2.8755 82
1.9880 2.8745 83
1.9758 2.8648 84
1.9711 2.8808 85
1.9635 2.8721 86
1.9512 2.8739 87
1.9526 2.8836 88
1.9442 2.8862 89
1.9364 2.8969 90
1.9311 2.8948 91
1.9234 2.9150 92
1.9154 2.9048 93
1.9057 2.9040 94
1.9057 2.9043 95
1.8981 2.8895 96
1.8923 2.9031 97
1.8797 2.9221 98
1.8793 2.9071 99

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2