Edit model card

openai/whisper-large-v2, all the parameters updated for 5 epochs

This model is a fine-tuned version of openai/whisper-large-v2 on the 2 hour dataset of SPGIspeech(custom dataset) dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 120
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Jungwonchang/whisper_large-v2-Full-SPGIspeech-xs

Finetuned
(183)
this model

Evaluation results