File size: 1,865 Bytes
d6b6b95 b4d104d d6b6b95 b61c152 d6b6b95 0273cf7 b4d104d 3297549 b61c152 3297549 b61c152 3297549 b61c152 3297549 b61c152 3297549 d6b6b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
tags:
- unet
- pix2pix
- pytorch
library_name: pytorch
license: wtfpl
datasets:
- K00B404/pix2pix_flux_set
language:
- en
pipeline_tag: image-to-image
---
# Pix2Pix UNet Model
## Model Description
Custom UNet model for Pix2Pix image translation.
- **Image Size:** 1024
- **Model Type:** big_UNet (1024)
## Usage
```python
import torch
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
big = True
# Load the model
name='big_model_weights.pth' if big else 'small_model_weights.pth'
checkpoint = torch.load(name)
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
```
## Model Architecture
UNet(
(encoder): Sequential(
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): ReLU(inplace=True)
(4): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(5): ReLU(inplace=True)
(6): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(9): ReLU(inplace=True)
)
(decoder): Sequential(
(0): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): ReLU(inplace=True)
(2): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): ReLU(inplace=True)
(4): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(5): ReLU(inplace=True)
(6): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(7): ReLU(inplace=True)
(8): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(9): Tanh()
)
) |