|
--- |
|
pipeline_tag: zero-shot-classification |
|
tags: |
|
- zero-shot-classification |
|
- swedish |
|
- megatron-bert |
|
language: |
|
- sv |
|
datasets: |
|
- KBLab/overlim |
|
widget: |
|
- example_title: Zero-shot |
|
text: Många skjuter upp sina tandläkarbesök |
|
candidate_labels: hälsa, politik, sport, religion |
|
inference: |
|
parameters: |
|
hypothesis_template: Detta exempel handlar om {}. |
|
--- |
|
|
|
|
|
# Megatron-BERT-large Swedish 165k for zero-shot classification |
|
|
|
|
|
This model is based on Megatron-BERT-large-165k (https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-165k). It was fine-tuned on the QNLI task and further fine-tuned on the MNLI task. |
|
The model can be used with the Hugging Face zero-shot classification pipeline. |
|
|
|
You can read more about the model on our [blog](https://kb-labb.github.io/posts/2023-02-12-zero-shot-text-classification/). |
|
|
|
## Usage |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> classifier = pipeline( |
|
... "zero-shot-classification", |
|
... model="KBlab/megatron-bert-large-swedish-cased-165-zero-shot" |
|
... ) |
|
>>> classifier( |
|
... "Ruben Östlunds ”Triangle of sadness” nomineras till en Golden Globe i kategorin bästa musikal eller komedi.", |
|
... candidate_labels=["hälsa", "politik", "sport", "religion", "nöje"], |
|
... hypothesis_template="Detta exempel handlar om {}.", |
|
... ) |
|
{'sequence': 'Ruben Östlunds ”Triangle of sadness” nomineras till en Golden Globe i kategorin bästa musikal eller komedi.', |
|
'labels': ['nöje', 'sport', 'religion', 'hälsa', 'politik'], |
|
'scores': [0.9274595379829407, |
|
0.025105971843004227, |
|
0.018440095707774162, |
|
0.017049923539161682, |
|
0.011944468133151531]} |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@misc{sikora2023swedish, |
|
author = {Sikora, Justyna}, |
|
title = {The KBLab Blog: Swedish zero-shot classification model}, |
|
url = {https://kb-labb.github.io/posts/2023-02-12-zero-shot-text-classification/}, |
|
year = {2023} |
|
} |
|
``` |
|
|