KYUNGHYUN9's picture
Upload 12 files
fc3d85b verified
metadata
base_model: klue/roberta-base
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:574417
  - loss:MultipleNegativesRankingLoss
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: 이집트 대통령 선거에서 가까운 여론조사
    sentences:
      -  카에다 충돌, 폭발로 예멘에서 35명의 군인이 사망
      - '보도자료 : 예멘 대통령 선거'
      -  파이프에 스케이트보드를 신은 남자
  - source_sentence:  소년이 팽창식 슬라이드를 내려간다.
    sentences:
      - 빨간 옷을 입은 소년이 부풀릴  있는 놀이기구를 타고 내려간다.
      - 새들이 물속에서 헤엄치고 있다.
      - 여자는 녹색 후추를 썰었다.
  - source_sentence: 비상 차량들이 현장에 있다.
    sentences:
      - 구급차와 소방차가 현장에서 도움을 주려고 한다.
      - 유물을 보는 사람들이 있다.
      - 구급차와 소방차에 불이 붙었다.
  - source_sentence: 그들은 서로 가까이 있지 않다.
    sentences:
      -  품질은 레이저에 가깝다.
      - 그들은 샤토와 매우 가깝다.
      - 그들은 샤토와 서로 어느 정도 떨어져 있다.
  - source_sentence: 딱딱한 모자를  남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.
    sentences:
      - 남자가 자고 있다.
      - 사람들이 말하고 있다.
      -  남자가 트럭을 보고 있다.
model-index:
  - name: SentenceTransformer based on klue/roberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8650328554572645
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8667952293243948
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8558437246473041
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.860673936504169
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8562228685196989
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8612884653822855
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.830160661850442
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8275972106510755
            name: Spearman Dot
          - type: pearson_max
            value: 0.8650328554572645
            name: Pearson Max
          - type: spearman_max
            value: 0.8667952293243948
            name: Spearman Max

SentenceTransformer based on klue/roberta-base

This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: klue/roberta-base
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.',
    '한 남자가 트럭을 보고 있다.',
    '남자가 자고 있다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.865
spearman_cosine 0.8668
pearson_manhattan 0.8558
spearman_manhattan 0.8607
pearson_euclidean 0.8562
spearman_euclidean 0.8613
pearson_dot 0.8302
spearman_dot 0.8276
pearson_max 0.865
spearman_max 0.8668

Training Details

Training Datasets

Unnamed Dataset

  • Size: 568,640 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 4 tokens
    • mean: 19.21 tokens
    • max: 128 tokens
    • min: 3 tokens
    • mean: 18.29 tokens
    • max: 93 tokens
    • min: 4 tokens
    • mean: 14.61 tokens
    • max: 57 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    발생 부하가 함께 5% 적습니다. 발생 부하의 5% 감소와 함께 11. 발생 부하가 5% 증가합니다.
    어떤 행사를 위해 음식과 옷을 배급하는 여성들. 여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다. 여자들이 사막에서 오토바이를 운전하고 있다.
    어린 아이들은 그 지식을 얻을 필요가 있다. 응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아. 젊은 사람들은 배울 필요가 없다.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Unnamed Dataset

  • Size: 5,777 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 17.61 tokens
    • max: 65 tokens
    • min: 3 tokens
    • mean: 17.66 tokens
    • max: 76 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    몰디브 대통령이 경찰의 반란 이후 사임하고, 시위 몰디브 대통령이 몇 주 동안의 시위 끝에 그만두다. 0.6799999999999999
    사자가 밀폐된 지역을 걷고 있다. 사자가 주위를 돌아다니고 있다. 0.52
    한 소년이 노래를 부르고 피아노를 치고 있다. 한 소년이 피아노를 치고 있다. 0.6
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 5
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss sts-dev_spearman_max
0.3458 500 0.4123 -
0.6916 1000 0.3009 0.8365
1.0007 1447 - 0.8610
1.0367 1500 0.259 -
1.3824 2000 0.1301 0.8580
1.7282 2500 0.0898 -
2.0007 2894 - 0.8668

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.2.2+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}