whisper-small-test / README.md
KasuleTrevor's picture
End of training
c555d30 verified
metadata
library_name: transformers
language:
  - sw
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_18_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hi - Sanchit Gandhi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_18_0
          args: 'config: sw, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 54.080058758722

Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9542
  • Wer: 54.0801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7988 0.2451 100 1.2849 109.6915
0.8952 0.4902 200 1.1418 95.3581
0.7785 0.7353 300 1.0263 94.3665
0.7053 0.9804 400 0.9466 85.3250
0.5318 1.2255 500 0.9058 81.4873
0.4995 1.4706 600 0.8554 66.8638
0.4802 1.7157 700 0.8245 64.1645
0.4654 1.9608 800 0.7959 77.4477
0.2461 2.2059 900 0.8013 66.1440
0.2342 2.4510 1000 0.7986 52.0676
0.2239 2.6961 1100 0.7772 62.4128
0.2732 2.9412 1200 0.7743 68.8065
0.1017 3.1863 1300 0.8005 65.6739
0.1081 3.4314 1400 0.8069 68.5678
0.1045 3.6765 1500 0.8008 63.2317
0.1076 3.9216 1600 0.7981 70.0220
0.0604 4.1667 1700 0.8220 57.7194
0.0449 4.4118 1800 0.8294 68.8652
0.0488 4.6569 1900 0.8347 59.0709
0.0453 4.9020 2000 0.8300 67.5468
0.0224 5.1471 2100 0.8509 51.2523
0.0179 5.3922 2200 0.8573 59.6071
0.0224 5.6373 2300 0.8622 50.2828
0.0218 5.8824 2400 0.8650 59.3720
0.01 6.1275 2500 0.8657 74.6126
0.0109 6.3725 2600 0.8816 64.8843
0.0095 6.6176 2700 0.8817 57.7378
0.0086 6.8627 2800 0.8824 69.1223
0.0046 7.1078 2900 0.8988 58.5861
0.0037 7.3529 3000 0.9064 55.1965
0.005 7.5980 3100 0.9079 65.3654
0.0048 7.8431 3200 0.8993 52.4128
0.0023 8.0882 3300 0.9158 59.9412
0.0021 8.3333 3400 0.9183 55.7363
0.0022 8.5784 3500 0.9247 60.8336
0.002 8.8235 3600 0.9282 60.2644
0.0017 9.0686 3700 0.9243 61.2156
0.0016 9.3137 3800 0.9308 61.0797
0.0017 9.5588 3900 0.9399 52.4091
0.0014 9.8039 4000 0.9414 50.3783
0.0013 10.0490 4100 0.9440 54.8109
0.0013 10.2941 4200 0.9430 58.0353
0.0013 10.5392 4300 0.9472 55.0790
0.0012 10.7843 4400 0.9470 55.8538
0.0011 11.0294 4500 0.9488 56.8454
0.0011 11.2745 4600 0.9517 54.1315
0.0011 11.5196 4700 0.9530 53.8414
0.0011 11.7647 4800 0.9538 54.4583
0.0011 12.0098 4900 0.9539 54.0507
0.0011 12.2549 5000 0.9542 54.0801

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1