|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- consumer-finance-complaints |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: distilroberta-base-wandb-week-3-complaints-classifier-512 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: consumer-finance-complaints |
|
type: consumer-finance-complaints |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8038326283064064 |
|
- name: F1 |
|
type: f1 |
|
value: 0.791857014338201 |
|
- name: Recall |
|
type: recall |
|
value: 0.8038326283064064 |
|
- name: Precision |
|
type: precision |
|
value: 0.7922430702228043 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilroberta-base-wandb-week-3-complaints-classifier-512 |
|
|
|
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6004 |
|
- Accuracy: 0.8038 |
|
- F1: 0.7919 |
|
- Recall: 0.8038 |
|
- Precision: 0.7922 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.7835312622444155e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 512 |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.7559 | 0.61 | 1500 | 0.7307 | 0.7733 | 0.7411 | 0.7733 | 0.7286 | |
|
| 0.6361 | 1.22 | 3000 | 0.6559 | 0.7846 | 0.7699 | 0.7846 | 0.7718 | |
|
| 0.5774 | 1.83 | 4500 | 0.6004 | 0.8038 | 0.7919 | 0.8038 | 0.7922 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|