|
--- |
|
license: afl-3.0 |
|
language: |
|
- en |
|
library_name: diffusers |
|
tags: |
|
- Class conditioned Diffusion |
|
- CIFAR10 Diffusion |
|
--- |
|
Here is Custom Pipeline for Class conditioned diffusion model. For training script, pipeline, tutorial nb and sampling please check my Github Repo:- https://github.com/KetanMann/Class_Conditioned_Diffusion_Training_Script |
|
Here is Class Conditional Diffusion Pipeline and Sampling. |
|
<div align="center"> |
|
<img src="grid_images.gif" alt="Class Conditioned Diffusion GIF"> |
|
</div> |
|
|
|
Firstly install Diffusers |
|
```bash |
|
!pip install git+https://github.com/huggingface/diffusers |
|
``` |
|
Then login to your huggingface account. |
|
```bash |
|
from huggingface_hub import notebook_login |
|
notebook_login() |
|
``` |
|
Finally for sampling and model testing. Run these lines of code. |
|
```bash |
|
from diffusers import UNet2DModel, DDPMScheduler |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from huggingface_hub import hf_hub_download |
|
import torch |
|
import os |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
from typing import List, Optional, Tuple, Union |
|
|
|
class DDPMPipelinenew(DiffusionPipeline): |
|
def __init__(self, unet, scheduler, num_classes: int): |
|
super().__init__() |
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
self.num_classes = num_classes |
|
self._device = unet.device # Ensure the pipeline knows the device |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
batch_size: int = 64, |
|
class_labels: Optional[torch.Tensor] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
num_inference_steps: int = 1000, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
|
|
# Ensure class_labels is on the same device as the model |
|
class_labels = class_labels.to(self._device) |
|
if class_labels.ndim == 0: |
|
class_labels = class_labels.unsqueeze(0).expand(batch_size) |
|
else: |
|
class_labels = class_labels.expand(batch_size) |
|
|
|
# Sample gaussian noise to begin loop |
|
if isinstance(self.unet.config.sample_size, int): |
|
image_shape = ( |
|
batch_size, |
|
self.unet.config.in_channels, |
|
self.unet.config.sample_size, |
|
self.unet.config.sample_size, |
|
) |
|
else: |
|
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) |
|
|
|
image = randn_tensor(image_shape, generator=generator, device=self._device) |
|
|
|
# Set step values |
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
for t in self.progress_bar(self.scheduler.timesteps): |
|
# Ensure the class labels are correctly broadcast to match the input tensor shape |
|
model_output = self.unet(image, t, class_labels).sample |
|
|
|
image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
def to(self, device: torch.device): |
|
self._device = device |
|
self.unet.to(device) |
|
return self |
|
|
|
def load_pipeline(repo_id, num_classes, device): |
|
unet = UNet2DModel.from_pretrained(repo_id, subfolder="unet").to(device) |
|
scheduler = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler") |
|
pipeline = DDPMPipelinenew(unet=unet, scheduler=scheduler, num_classes=num_classes) |
|
return pipeline.to(device) # Move the entire pipeline to the device |
|
|
|
def save_images_locally(images, save_dir, epoch, class_label): |
|
os.makedirs(save_dir, exist_ok=True) |
|
for i, image in enumerate(images): |
|
image_path = os.path.join(save_dir, f"image_epoch{epoch}_class{class_label}_idx{i}.png") |
|
image.save(image_path) |
|
|
|
def generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch): |
|
generator = torch.Generator(device=pipeline._device).manual_seed(0) |
|
class_labels = torch.tensor([class_label] * batch_size).to(pipeline._device) |
|
images = pipeline( |
|
generator=generator, |
|
batch_size=batch_size, |
|
num_inference_steps=num_inference_steps, |
|
class_labels=class_labels, |
|
output_type="pil", |
|
).images |
|
save_images_locally(images, save_dir, epoch, class_label) |
|
return images |
|
|
|
def create_image_grid(images, grid_size, save_path): |
|
assert len(images) == grid_size ** 2, "Number of images must be equal to grid_size squared" |
|
width, height = images[0].size |
|
grid_img = Image.new('RGB', (grid_size * width, grid_size * height)) |
|
|
|
for i, image in enumerate(images): |
|
x = i % grid_size * width |
|
y = i // grid_size * height |
|
grid_img.paste(image, (x, y)) |
|
|
|
grid_img.save(save_path) |
|
return grid_img |
|
|
|
if __name__ == "__main__": |
|
repo_id = "Ketansomewhere/cifar10_conditional_diffusion1" |
|
num_classes = 10 # Adjust to your number of classes |
|
batch_size = 64 |
|
num_inference_steps = 1000 # Can be as low as 50 for faster generation |
|
save_dir = "generated_images" |
|
epoch = 0 |
|
grid_size = 8 # 8x8 grid |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
pipeline = load_pipeline(repo_id, num_classes, device) |
|
|
|
for class_label in range(num_classes): |
|
images = generate_images(pipeline, class_label, batch_size, num_inference_steps, save_dir, epoch) |
|
|
|
# Create and save the grid image |
|
grid_img_path = os.path.join(save_dir, f"grid_image_class{class_label}.png") |
|
grid_img = create_image_grid(images, grid_size, grid_img_path) |
|
|
|
# Plot the grid image |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(grid_img) |
|
plt.axis('off') |
|
plt.title(f'Class {class_label}') |
|
plt.savefig(os.path.join(save_dir, f"grid_image_class{class_label}.png")) |
|
plt.show() |
|
``` |
|
|
|
Also, check this nb for the above implementation *testing.ipynb* . |