|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pub_med_summarization_dataset |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: wikihow-t5-small-finetuned-pubmed |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: pub_med_summarization_dataset |
|
type: pub_med_summarization_dataset |
|
args: document |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 8.9619 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wikihow-t5-small-finetuned-pubmed |
|
|
|
This model is a fine-tuned version of [deep-learning-analytics/wikihow-t5-small](https://huggingface.co/deep-learning-analytics/wikihow-t5-small) on the pub_med_summarization_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2702 |
|
- Rouge1: 8.9619 |
|
- Rouge2: 3.2719 |
|
- Rougel: 8.1558 |
|
- Rougelsum: 8.5714 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.5984 | 1.0 | 4000 | 2.3696 | 10.237 | 3.8609 | 8.9776 | 9.677 | 19.0 | |
|
| 2.5677 | 2.0 | 8000 | 2.3132 | 9.302 | 3.4499 | 8.3816 | 8.8831 | 19.0 | |
|
| 2.5038 | 3.0 | 12000 | 2.2884 | 9.0578 | 3.3103 | 8.23 | 8.6723 | 19.0 | |
|
| 2.4762 | 4.0 | 16000 | 2.2758 | 9.0001 | 3.2882 | 8.1845 | 8.6084 | 19.0 | |
|
| 2.4393 | 5.0 | 20000 | 2.2702 | 8.9619 | 3.2719 | 8.1558 | 8.5714 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.6 |
|
|