Kikia26's picture
Training in progress epoch 9
64be29f
metadata
license: mit
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
tags:
  - generated_from_keras_callback
model-index:
  - name: Kikia26/FineTunePubMedBertWithTensorflowKeras
    results: []

Kikia26/FineTunePubMedBertWithTensorflowKeras

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3522
  • Validation Loss: 0.4051
  • Train Precision: 0.5896
  • Train Recall: 0.6245
  • Train F1: 0.6066
  • Train Accuracy: 0.8857
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 100, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
1.2909 0.7719 0.0 0.0 0.0 0.7813 0
0.8005 0.5567 0.4313 0.3776 0.4027 0.8372 1
0.5460 0.4551 0.5509 0.5823 0.5662 0.8676 2
0.4141 0.4381 0.5443 0.6477 0.5915 0.8732 3
0.3626 0.4051 0.5896 0.6245 0.6066 0.8857 4
0.3591 0.4051 0.5896 0.6245 0.6066 0.8857 5
0.3503 0.4051 0.5896 0.6245 0.6066 0.8857 6
0.3521 0.4051 0.5896 0.6245 0.6066 0.8857 7
0.3554 0.4051 0.5896 0.6245 0.6066 0.8857 8
0.3522 0.4051 0.5896 0.6245 0.6066 0.8857 9

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.14.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0