CodeMaster-v1-7b / README.md
KingNish's picture
Update README.md
f37f548 verified
---
tags:
- merge
- mergekit
- lazymergekit
- microsoft/wavecoder-ultra-6.7b
base_model:
- microsoft/wavecoder-ultra-6.7b
- microsoft/wavecoder-ultra-6.7b
license: mit
pipeline_tag: text-generation
---
# CodeMaster v1 7b
CodeMaster v1 7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [microsoft/wavecoder-ultra-6.7b](https://huggingface.co/microsoft/wavecoder-ultra-6.7b)
* [microsoft/wavecoder-ultra-6.7b](https://huggingface.co/microsoft/wavecoder-ultra-6.7b)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: microsoft/wavecoder-ultra-6.7b
layer_range:
- 0
- 32
- model: microsoft/wavecoder-ultra-6.7b
layer_range:
- 0
- 32
merge_method: slerp
base_model: microsoft/wavecoder-ultra-6.7b
parameters:
t:
- filter: self_attn
value:
- 0
- 0.5
- 0.3
- 0.7
- 1
- filter: mlp
value:
- 1
- 0.5
- 0.7
- 0.3
- 0
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "KingNish/CodeMaster-v1-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=8096, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```