KingNish's picture
Update README.md
d164caf verified
metadata
base_model: meta-llama/Llama-3.2-3B-Instruct
datasets:
  - KingNish/reasoning-base-20k
language:
  - en
license: llama3.2
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - trl
  - sft
  - reasoning
  - llama-3

Model Dexcription

It's First iteration of this model. For testing purpose its just trained on 10k rows. It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1. It do reasoning separately (Just like o1), no tags (like reflection). Below is inference code.

from transformers import AutoModelForCausalLM, AutoTokenizer

MAX_REASONING_TOKENS = 4096
MAX_RESPONSE_TOKENS = 1024

model_name = "KingNish/Reasoning-Llama-3b-v0.1"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
    {"role": "user", "content": prompt}
]

# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)

# print("REASONING: " + reasoning_output)

# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("ANSWER: " + response_output)

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.