|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
base_model: mistralai/Mixtral-8x7B-v0.1 |
|
model-index: |
|
- name: mixtral_full |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mixtral_full |
|
|
|
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9139 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 2.2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.1966 | 0.07 | 20 | 1.1074 | |
|
| 1.0281 | 0.14 | 40 | 1.0284 | |
|
| 0.9837 | 0.21 | 60 | 0.9990 | |
|
| 0.992 | 0.28 | 80 | 0.9808 | |
|
| 0.9642 | 0.35 | 100 | 0.9685 | |
|
| 0.9706 | 0.42 | 120 | 0.9591 | |
|
| 0.9355 | 0.5 | 140 | 0.9523 | |
|
| 0.9253 | 0.57 | 160 | 0.9468 | |
|
| 0.9125 | 0.64 | 180 | 0.9412 | |
|
| 0.9232 | 0.71 | 200 | 0.9363 | |
|
| 0.9183 | 0.78 | 220 | 0.9320 | |
|
| 0.9175 | 0.85 | 240 | 0.9284 | |
|
| 0.9219 | 0.92 | 260 | 0.9253 | |
|
| 0.9028 | 0.99 | 280 | 0.9228 | |
|
| 0.8405 | 1.06 | 300 | 0.9251 | |
|
| 0.8429 | 1.13 | 320 | 0.9238 | |
|
| 0.8453 | 1.2 | 340 | 0.9231 | |
|
| 0.8722 | 1.27 | 360 | 0.9214 | |
|
| 0.8511 | 1.35 | 380 | 0.9200 | |
|
| 0.8471 | 1.42 | 400 | 0.9186 | |
|
| 0.8376 | 1.49 | 420 | 0.9171 | |
|
| 0.8372 | 1.56 | 440 | 0.9160 | |
|
| 0.8517 | 1.63 | 460 | 0.9155 | |
|
| 0.8244 | 1.7 | 480 | 0.9147 | |
|
| 0.8432 | 1.77 | 500 | 0.9140 | |
|
| 0.8519 | 1.84 | 520 | 0.9135 | |
|
| 0.8128 | 1.91 | 540 | 0.9135 | |
|
| 0.8296 | 1.98 | 560 | 0.9134 | |
|
| 0.7848 | 2.05 | 580 | 0.9138 | |
|
| 0.8166 | 2.12 | 600 | 0.9139 | |
|
| 0.7963 | 2.2 | 620 | 0.9139 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.2.dev0 |
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |