KrithikV's picture
HuggingFaceUser/adapter-mini-medmobile-MEDQA-V3
a924ca1 verified
metadata
base_model: microsoft/Phi-3-mini-4k-instruct
library_name: peft
license: mit
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: phi-3-mini-LoRA-MEDQA-V3
    results: []

phi-3-mini-LoRA-MEDQA-V3

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.6898 0.3633 100 0.6195
0.6113 0.7266 200 0.6134
0.6095 1.0899 300 0.6110
0.6034 1.4532 400 0.6103
0.6037 1.8165 500 0.6093
0.6043 2.1798 600 0.6089
0.5986 2.5431 700 0.6089
0.5993 2.9064 800 0.6086

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1