Edit model card

fine_tuned_xlm-roberta-large_2April

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Best F1: 75.9147
  • Loss: 1.6634
  • Exact: 39.3876
  • F1: 56.7272
  • Total: 3821
  • Hasans Exact: 56.6152
  • Hasans F1: 81.5886
  • Hasans Total: 2653
  • Noans Exact: 0.2568
  • Noans F1: 0.2568
  • Noans Total: 1168
  • Best Exact: 60.4292
  • Best Exact Thresh: 0.6508
  • Best F1 Thresh: 0.9299

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Best F1 Validation Loss Exact F1 Total Hasans Exact Hasans F1 Hasans Total Noans Exact Noans F1 Noans Total Best Exact Best Exact Thresh Best F1 Thresh
2.0619 0.26 500 54.8058 1.4812 32.2952 51.4988 3821 46.5134 74.1714 2653 0.0 0.0 1168 41.4551 0.7820 0.8887
1.3598 0.53 1000 65.8410 1.2289 35.9068 54.1665 3821 51.7150 78.0136 2653 0.0 0.0 1168 51.7666 0.8149 0.8993
1.2347 0.79 1500 67.6083 1.1868 37.2416 55.0317 3821 53.6374 79.2597 2653 0.0 0.0 1168 53.7032 0.7981 0.8571
1.0961 1.05 2000 71.4132 1.1491 38.9165 55.8262 3821 56.0498 80.4041 2653 0.0 0.0 1168 57.5504 0.7733 0.8679
0.9003 1.32 2500 72.3291 1.2053 38.4193 56.0447 3821 55.3336 80.7188 2653 0.0 0.0 1168 57.5766 0.8557 0.9662
0.8705 1.58 3000 71.7222 1.1239 38.5239 56.1153 3821 55.4844 80.8204 2653 0.0 0.0 1168 56.6344 0.7408 0.8452
0.8655 1.84 3500 73.6273 1.0855 39.0212 56.4204 3821 56.2005 81.2599 2653 0.0 0.0 1168 58.7543 0.7574 0.8970
0.7431 2.11 4000 74.8323 1.1817 39.6231 56.5930 3821 56.9544 81.3954 2653 0.2568 0.2568 1168 59.7226 0.8032 0.9219
0.5738 2.37 4500 74.4675 1.2047 38.8642 56.6456 3821 55.8236 81.4334 2653 0.3425 0.3425 1168 58.8851 0.7003 0.8792
0.5904 2.63 5000 74.7345 1.1571 38.5763 56.4366 3821 55.5221 81.2455 2653 0.0856 0.0856 1168 59.1206 0.7922 0.8458
0.5831 2.89 5500 74.9378 1.1537 39.7278 56.6778 3821 57.2182 81.6306 2653 0.0 0.0 1168 59.9581 0.7947 0.8767
0.4785 3.16 6000 75.0234 1.3432 39.3353 56.8437 3821 56.1628 81.3795 2653 1.1130 1.1130 1168 59.2515 0.7999 0.8258
0.3774 3.42 6500 74.8641 1.4903 39.3876 56.6856 3821 56.2759 81.1894 2653 1.0274 1.0274 1168 59.6964 0.7004 0.9268
0.3882 3.68 7000 75.0504 1.3418 38.7857 56.4315 3821 55.8613 81.2759 2653 0.0 0.0 1168 59.4609 0.6782 0.9456
0.3747 3.95 7500 75.3181 1.3673 39.4399 56.6455 3821 56.8036 81.5840 2653 0.0 0.0 1168 59.6441 0.7541 0.9554
0.2748 4.21 8000 75.5835 1.5103 39.2829 56.6922 3821 56.5398 81.6136 2653 0.0856 0.0856 1168 60.1152 0.7237 0.9792
0.2346 4.47 8500 75.8283 1.6566 40.0157 57.2731 3821 57.0675 81.9225 2653 1.2842 1.2842 1168 60.5339 0.7154 0.9550
0.2339 4.74 9000 75.7051 1.6699 39.0474 56.5165 3821 56.0874 81.2475 2653 0.3425 0.3425 1168 60.3245 0.8887 0.9799
0.23 5.0 9500 75.9147 1.6634 39.3876 56.7272 3821 56.6152 81.5886 2653 0.2568 0.2568 1168 60.4292 0.6508 0.9299

Framework versions

  • Transformers 4.37.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
559M params
Tensor type
F32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kudod/fine_tuned_xlm-roberta-large_2April

Finetuned
(275)
this model