Kudod's picture
End of training
a255b66 verified
|
raw
history blame
5.84 kB
metadata
library_name: transformers
license: mit
base_model: vinai/phobert-large
tags:
  - generated_from_trainer
model-index:
  - name: grab-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1
    results: []

grab-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1

This model is a fine-tuned version of vinai/phobert-large on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Ho Hoảng thời gian Háng trừu tượng Hông tin ctt Hụ cấp Hứ Iấy tờ Iền cụ thể Iền trừu tượng à số thuế à đơn Ình thức làm việc Ông Ương Ị trí Ố công Ố giờ Ố điểm Ố đơn Ợt Ỷ lệ Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 147 0.4119 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} {'precision': 0.5657894736842105, 'recall': 0.6825396825396826, 'f1': 0.6187050359712231, 'number': 63} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.26865671641791045, 'recall': 0.43902439024390244, 'f1': 0.3333333333333333, 'number': 82} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 54} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} {'precision': 0.6808510638297872, 'recall': 0.9411764705882353, 'f1': 0.7901234567901235, 'number': 238} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 42} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} 0.5622 0.4864 0.5215 0.8912

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1