Edit model card

Jupiter-k-7B-slerp ( My Favorite model! )

image/png

Jupiter-k-7B-slerp is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: Kukedlc/NeuralContamination-7B-ties
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: Kukedlc/NeuralTopBench-7B-ties
    parameters:
      density: 0.5
      weight: [0, 0.3, 0.7, 1] # weight gradient
  - model: Gille/StrangeMerges_32-7B-slerp
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: Kukedlc/NeuralMaxime-7B-slerp 
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16

πŸ’» Usage - Stream

# Requirements
!pip install -qU transformers accelerate bitsandbytes

# Imports & settings
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import warnings
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')

# Model & Tokenizer
MODEL_NAME = "Kukedlc/Jupiter-k-7B-slerp"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:1', load_in_4bit=True)
tok = AutoTokenizer.from_pretrained(MODEL_NAME)

# Inference
prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness"
inputs = tok([prompt], return_tensors="pt").to('cuda')
streamer = TextStreamer(tok)

# Despite returning the usual output, the streamer will also print the generated text to stdout.
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7)

πŸ’» Usage - Clasic

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/Jupiter-k-7B-slerp"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
86
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kukedlc/Jupiter-k-7B-slerp

Merges
6 models