NeuralSOTA-7B-slerp / README.md
Kukedlc's picture
Upload folder using huggingface_hub
7587584 verified
---
tags:
- merge
- mergekit
- lazymergekit
- Kukedlc/NeuralSoTa-7b-v0.1
- Kukedlc/NeuralSynthesis-7B-v0.3
- Kukedlc/NeuralSirKrishna-7b
base_model:
- Kukedlc/NeuralSoTa-7b-v0.1
- Kukedlc/NeuralSynthesis-7B-v0.3
- Kukedlc/NeuralSirKrishna-7b
---
# NeuralSOTA-7B-slerp
NeuralSOTA-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Kukedlc/NeuralSoTa-7b-v0.1](https://huggingface.co/Kukedlc/NeuralSoTa-7b-v0.1)
* [Kukedlc/NeuralSynthesis-7B-v0.3](https://huggingface.co/Kukedlc/NeuralSynthesis-7B-v0.3)
* [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b)
## 🧩 Configuration
```yaml
models:
- model: Kukedlc/NeuralSirKrishna-7b
# no parameters necessary for base model
- model: Kukedlc/NeuralSoTa-7b-v0.1
parameters:
density: 0.55
weight: 0.3
- model: Kukedlc/NeuralSynthesis-7B-v0.3
parameters:
density: 0.55
weight: 0.35
- model: Kukedlc/NeuralSirKrishna-7b
parameters:
density: 0.55
weight: 0.35
merge_method: dare_ties
base_model: Kukedlc/NeuralSirKrishna-7b
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralSOTA-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```