Kukuru0917's picture
End of training
34aa7f3
|
raw
history blame
2.9 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6375

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2745
  • Accuracy: 0.6375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 1.7629 0.4375
No log 2.0 40 1.5012 0.5
No log 3.0 60 1.3757 0.5
No log 4.0 80 1.2452 0.5625
No log 5.0 100 1.2394 0.5625
No log 6.0 120 1.2083 0.6125
No log 7.0 140 1.2209 0.575
No log 8.0 160 1.2755 0.5875
No log 9.0 180 1.2794 0.5687
No log 10.0 200 1.2639 0.6125
No log 11.0 220 1.3129 0.6125
No log 12.0 240 1.2277 0.6312
No log 13.0 260 1.3620 0.5938
No log 14.0 280 1.3023 0.6062
No log 15.0 300 1.3334 0.6
No log 16.0 320 1.4142 0.5813
No log 17.0 340 1.2863 0.6125
No log 18.0 360 1.4084 0.5875
No log 19.0 380 1.4195 0.575
No log 20.0 400 1.4164 0.5938

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3