Improving Black-box Robustness with In-Context Rewriting
Collection
24 items
•
Updated
•
1
This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | F1 | Acc | Validation Loss |
---|---|---|---|---|---|
No log | 1.0 | 300 | 0.8951 | 0.8955 | 0.3460 |
0.6828 | 2.0 | 600 | 0.8957 | 0.8959 | 0.3295 |
0.6828 | 3.0 | 900 | 0.9096 | 0.9095 | 0.3196 |
0.1866 | 4.0 | 1200 | 0.9011 | 0.9018 | 0.4358 |
0.0804 | 5.0 | 1500 | 0.9116 | 0.9116 | 0.4441 |
0.0804 | 6.0 | 1800 | 0.9121 | 0.9124 | 0.4983 |
0.0236 | 7.0 | 2100 | 0.9126 | 0.9128 | 0.5473 |
0.0236 | 8.0 | 2400 | 0.9082 | 0.9086 | 0.6025 |
0.0092 | 9.0 | 2700 | 0.9121 | 0.9124 | 0.6057 |
0.0028 | 10.0 | 3000 | 0.9123 | 0.9126 | 0.6235 |
Base model
google-bert/bert-base-uncased