|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- nlp |
|
- llm |
|
--- |
|
# Amber |
|
|
|
<center><img src="amber_logo.png" alt="amber logo" width="300"/></center> |
|
|
|
We present Amber, the first model in the LLM360 family. Amber is an |
|
7B English language model with the LLaMA architecture. |
|
|
|
## About LLM360 |
|
LLM360 is an initiative for comprehensive and fully open-sourced LLMs, |
|
where all training details, model checkpoints, intermediate results, and |
|
additional analyses are made available to the community. Our goal is to advance |
|
the field by inviting the community to deepen the understanding of LLMs |
|
together. As the first step of the project LLM360, we release all intermediate |
|
model checkpoints, our fully-prepared pre-training dataset, all source code and |
|
configurations, and training details. We are |
|
committed to continually pushing the boundaries of LLMs through this open-source |
|
effort. |
|
|
|
Get access now at [LLM360 site](https://www.llm360.ai/) |
|
|
|
## Model Description |
|
|
|
- **Model type:** Language model with the same architecture as LLaMA-7B |
|
- **Language(s) (NLP):** English |
|
- **License:** Apache 2.0 |
|
- **Resources for more information:** |
|
- [Training Code](https://github.com/LLM360/amber-train) |
|
- [Data Preparation](https://github.com/LLM360/amber-data-prep) |
|
- [Metrics](https://github.com/LLM360/Analysis360) |
|
- [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets) |
|
|
|
|
|
# Loading Amber |
|
|
|
To load a specific checkpoint, simply pass a revision with a value between `"ckpt_000"` and `"ckpt_358"`. If no revision is provided, it will load `"ckpt_359"`, which is the final checkpoint. |
|
|
|
```python |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("LLM360/Amber", revision="ckpt_356") |
|
model = LlamaForCausalLM.from_pretrained("LLM360/Amber", revision="ckpt_356") |
|
|
|
input_text = "translate English to German: How old are you?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids |
|
|
|
outputs = model.generate(input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
``` |
|
|
|
# Amber Training Details |
|
|
|
## DataMix |
|
| Subset | Tokens (Billion) | |
|
| ----------- | ----------- | |
|
| Arxiv | 30.00 | |
|
| Book | 28.86 | |
|
| C4 | 197.67 | |
|
| Refined-Web | 665.01 | |
|
| StarCoder | 291.92 | |
|
| StackExchange | 21.75 | |
|
| Wikipedia | 23.90 | |
|
| Total | 1259.13 | |
|
|
|
## Hyperparameters |
|
| Hyperparameter | Value | |
|
| ----------- | ----------- | |
|
| Total Parameters | 6.7B | |
|
| Hidden Size | 4096 | |
|
| Intermediate Size (MLPs) | 11008 | |
|
| Number of Attention Heads | 32 | |
|
| Number of Hidden Lyaers | 32 | |
|
| RMSNorm ɛ | 1e^-6 | |
|
| Max Seq Length | 2048 | |
|
| Vocab Size | 32000 | |
|
|
|
| Training Loss | |
|
|------------------------------------------------------------| |
|
| <img src="loss_curve.png" alt="loss curve" width="400"/> | |
|
|
|
|
|
# Evaluation |
|
|
|
Please refer to our [W&B project page](https://wandb.ai/llm360/CrystalCoder) for complete training logs and evaluation results. |
|
|
|
| ARC | HellaSwag | |
|
|--------------------------------------------------------|--------------------------------------------------------------------| |
|
| <img src="amber-arc-curve.png" alt="arc" width="400"/> | <img src="amber-hellaswag-curve.png" alt="hellaswag" width="400"/> | |
|
|
|
|MMLU | TruthfulQA | |
|
|-----------------------------------------------------|-----------------------------------------------------------| |
|
|<img src="amber-mmlu-curve.png" alt="mmlu" width="400"/> | <img src="amber-truthfulqa-curve.png" alt="truthfulqa" width="400"/> | |
|
|
|
# Citation |
|
|
|
**BibTeX:** |
|
|
|
```bibtex |
|
@misc{liu2023llm360, |
|
title={LLM360: Towards Fully Transparent Open-Source LLMs}, |
|
author={Zhengzhong Liu and Aurick Qiao and Willie Neiswanger and Hongyi Wang and Bowen Tan and Tianhua Tao and Junbo Li and Yuqi Wang and Suqi Sun and Omkar Pangarkar and Richard Fan and Yi Gu and Victor Miller and Yonghao Zhuang and Guowei He and Haonan Li and Fajri Koto and Liping Tang and Nikhil Ranjan and Zhiqiang Shen and Xuguang Ren and Roberto Iriondo and Cun Mu and Zhiting Hu and Mark Schulze and Preslav Nakov and Tim Baldwin and Eric P. Xing}, |
|
year={2023}, |
|
eprint={2312.06550}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|