metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
model-index:
- name: MUG-B-1.6
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en-ext)
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.04047976011994
- type: ap
value: 23.622442298323236
- type: f1
value: 61.681362134359354
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 72.38805970149255
- type: ap
value: 35.14527522183942
- type: f1
value: 66.40004634079556
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (de)
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 54.3254817987152
- type: ap
value: 71.95259605308317
- type: f1
value: 52.50731386267296
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (ja)
config: ja
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 56.33832976445397
- type: ap
value: 12.671021199223937
- type: f1
value: 46.127586182990605
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.70805000000001
- type: ap
value: 90.58639913354553
- type: f1
value: 93.69822635061847
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 50.85000000000001
- type: f1
value: 49.80013009020246
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (de)
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 27.203999999999994
- type: f1
value: 26.60134413072989
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (es)
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 34.878
- type: f1
value: 33.072592092252314
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (fr)
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 31.557999999999993
- type: f1
value: 30.866094552542624
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (ja)
config: ja
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 22.706
- type: f1
value: 22.23195837325246
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (zh)
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 22.349999999999998
- type: f1
value: 21.80183891680617
- task:
type: Retrieval
dataset:
type: mteb/arguana
name: MTEB ArguAna
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 41.892
- type: map_at_10
value: 57.989999999999995
- type: map_at_100
value: 58.45
- type: map_at_1000
value: 58.453
- type: map_at_20
value: 58.392999999999994
- type: map_at_3
value: 53.746
- type: map_at_5
value: 56.566
- type: mrr_at_1
value: 43.314
- type: mrr_at_10
value: 58.535000000000004
- type: mrr_at_100
value: 58.975
- type: mrr_at_1000
value: 58.977999999999994
- type: mrr_at_20
value: 58.916999999999994
- type: mrr_at_3
value: 54.303000000000004
- type: mrr_at_5
value: 57.055
- type: ndcg_at_1
value: 41.892
- type: ndcg_at_10
value: 66.176
- type: ndcg_at_100
value: 67.958
- type: ndcg_at_1000
value: 68.00699999999999
- type: ndcg_at_20
value: 67.565
- type: ndcg_at_3
value: 57.691
- type: ndcg_at_5
value: 62.766
- type: precision_at_1
value: 41.892
- type: precision_at_10
value: 9.189
- type: precision_at_100
value: 0.993
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.861
- type: precision_at_3
value: 23.044
- type: precision_at_5
value: 16.287
- type: recall_at_1
value: 41.892
- type: recall_at_10
value: 91.892
- type: recall_at_100
value: 99.289
- type: recall_at_1000
value: 99.644
- type: recall_at_20
value: 97.226
- type: recall_at_3
value: 69.132
- type: recall_at_5
value: 81.437
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 49.03486273664411
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 43.04797567338598
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 64.29499572176032
- type: mrr
value: 77.28861627753592
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 89.53248242133246
- type: cos_sim_spearman
value: 88.38032705871927
- type: euclidean_pearson
value: 87.77994445569084
- type: euclidean_spearman
value: 88.38032705871927
- type: manhattan_pearson
value: 87.52369210088627
- type: manhattan_spearman
value: 88.27972235673434
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 85.4090909090909
- type: f1
value: 84.87743757972068
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 39.73840151083438
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.565075977998966
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-android
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: map_at_1
value: 33.082
- type: map_at_10
value: 44.787
- type: map_at_100
value: 46.322
- type: map_at_1000
value: 46.446
- type: map_at_20
value: 45.572
- type: map_at_3
value: 40.913
- type: map_at_5
value: 42.922
- type: mrr_at_1
value: 40.629
- type: mrr_at_10
value: 51.119
- type: mrr_at_100
value: 51.783
- type: mrr_at_1000
value: 51.82
- type: mrr_at_20
value: 51.49700000000001
- type: mrr_at_3
value: 48.355
- type: mrr_at_5
value: 49.979
- type: ndcg_at_1
value: 40.629
- type: ndcg_at_10
value: 51.647
- type: ndcg_at_100
value: 56.923
- type: ndcg_at_1000
value: 58.682
- type: ndcg_at_20
value: 53.457
- type: ndcg_at_3
value: 46.065
- type: ndcg_at_5
value: 48.352000000000004
- type: precision_at_1
value: 40.629
- type: precision_at_10
value: 10.072000000000001
- type: precision_at_100
value: 1.5939999999999999
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_20
value: 5.908
- type: precision_at_3
value: 22.222
- type: precision_at_5
value: 15.937000000000001
- type: recall_at_1
value: 33.082
- type: recall_at_10
value: 64.55300000000001
- type: recall_at_100
value: 86.86399999999999
- type: recall_at_1000
value: 97.667
- type: recall_at_20
value: 70.988
- type: recall_at_3
value: 48.067
- type: recall_at_5
value: 54.763
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-english
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: map_at_1
value: 32.272
- type: map_at_10
value: 42.620000000000005
- type: map_at_100
value: 43.936
- type: map_at_1000
value: 44.066
- type: map_at_20
value: 43.349
- type: map_at_3
value: 39.458
- type: map_at_5
value: 41.351
- type: mrr_at_1
value: 40.127
- type: mrr_at_10
value: 48.437000000000005
- type: mrr_at_100
value: 49.096000000000004
- type: mrr_at_1000
value: 49.14
- type: mrr_at_20
value: 48.847
- type: mrr_at_3
value: 46.21
- type: mrr_at_5
value: 47.561
- type: ndcg_at_1
value: 40.127
- type: ndcg_at_10
value: 48.209999999999994
- type: ndcg_at_100
value: 52.632
- type: ndcg_at_1000
value: 54.59
- type: ndcg_at_20
value: 50.012
- type: ndcg_at_3
value: 43.996
- type: ndcg_at_5
value: 46.122
- type: precision_at_1
value: 40.127
- type: precision_at_10
value: 9.051
- type: precision_at_100
value: 1.465
- type: precision_at_1000
value: 0.193
- type: precision_at_20
value: 5.35
- type: precision_at_3
value: 21.104
- type: precision_at_5
value: 15.146
- type: recall_at_1
value: 32.272
- type: recall_at_10
value: 57.870999999999995
- type: recall_at_100
value: 76.211
- type: recall_at_1000
value: 88.389
- type: recall_at_20
value: 64.354
- type: recall_at_3
value: 45.426
- type: recall_at_5
value: 51.23799999999999
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-gaming
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: map_at_1
value: 40.261
- type: map_at_10
value: 53.400000000000006
- type: map_at_100
value: 54.42399999999999
- type: map_at_1000
value: 54.473000000000006
- type: map_at_20
value: 54.052
- type: map_at_3
value: 49.763000000000005
- type: map_at_5
value: 51.878
- type: mrr_at_1
value: 46.019
- type: mrr_at_10
value: 56.653
- type: mrr_at_100
value: 57.28
- type: mrr_at_1000
value: 57.303000000000004
- type: mrr_at_20
value: 57.057
- type: mrr_at_3
value: 53.971000000000004
- type: mrr_at_5
value: 55.632000000000005
- type: ndcg_at_1
value: 46.019
- type: ndcg_at_10
value: 59.597
- type: ndcg_at_100
value: 63.452
- type: ndcg_at_1000
value: 64.434
- type: ndcg_at_20
value: 61.404
- type: ndcg_at_3
value: 53.620999999999995
- type: ndcg_at_5
value: 56.688
- type: precision_at_1
value: 46.019
- type: precision_at_10
value: 9.748999999999999
- type: precision_at_100
value: 1.261
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_20
value: 5.436
- type: precision_at_3
value: 24.075
- type: precision_at_5
value: 16.715
- type: recall_at_1
value: 40.261
- type: recall_at_10
value: 74.522
- type: recall_at_100
value: 91.014
- type: recall_at_1000
value: 98.017
- type: recall_at_20
value: 81.186
- type: recall_at_3
value: 58.72500000000001
- type: recall_at_5
value: 66.23599999999999
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-gis
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: map_at_1
value: 27.666
- type: map_at_10
value: 36.744
- type: map_at_100
value: 37.794
- type: map_at_1000
value: 37.865
- type: map_at_20
value: 37.336999999999996
- type: map_at_3
value: 33.833999999999996
- type: map_at_5
value: 35.61
- type: mrr_at_1
value: 29.944
- type: mrr_at_10
value: 38.838
- type: mrr_at_100
value: 39.765
- type: mrr_at_1000
value: 39.818999999999996
- type: mrr_at_20
value: 39.373000000000005
- type: mrr_at_3
value: 36.234
- type: mrr_at_5
value: 37.844
- type: ndcg_at_1
value: 29.944
- type: ndcg_at_10
value: 41.986000000000004
- type: ndcg_at_100
value: 47.05
- type: ndcg_at_1000
value: 48.897
- type: ndcg_at_20
value: 43.989
- type: ndcg_at_3
value: 36.452
- type: ndcg_at_5
value: 39.395
- type: precision_at_1
value: 29.944
- type: precision_at_10
value: 6.4750000000000005
- type: precision_at_100
value: 0.946
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_20
value: 3.6839999999999997
- type: precision_at_3
value: 15.443000000000001
- type: precision_at_5
value: 10.96
- type: recall_at_1
value: 27.666
- type: recall_at_10
value: 56.172999999999995
- type: recall_at_100
value: 79.142
- type: recall_at_1000
value: 93.013
- type: recall_at_20
value: 63.695
- type: recall_at_3
value: 41.285
- type: recall_at_5
value: 48.36
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-mathematica
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: map_at_1
value: 17.939
- type: map_at_10
value: 27.301
- type: map_at_100
value: 28.485
- type: map_at_1000
value: 28.616000000000003
- type: map_at_20
value: 27.843
- type: map_at_3
value: 24.342
- type: map_at_5
value: 26.259
- type: mrr_at_1
value: 22.761
- type: mrr_at_10
value: 32.391
- type: mrr_at_100
value: 33.297
- type: mrr_at_1000
value: 33.361000000000004
- type: mrr_at_20
value: 32.845
- type: mrr_at_3
value: 29.498
- type: mrr_at_5
value: 31.375999999999998
- type: ndcg_at_1
value: 22.761
- type: ndcg_at_10
value: 33.036
- type: ndcg_at_100
value: 38.743
- type: ndcg_at_1000
value: 41.568
- type: ndcg_at_20
value: 34.838
- type: ndcg_at_3
value: 27.803
- type: ndcg_at_5
value: 30.781
- type: precision_at_1
value: 22.761
- type: precision_at_10
value: 6.132
- type: precision_at_100
value: 1.031
- type: precision_at_1000
value: 0.14200000000000002
- type: precision_at_20
value: 3.582
- type: precision_at_3
value: 13.474
- type: precision_at_5
value: 10.123999999999999
- type: recall_at_1
value: 17.939
- type: recall_at_10
value: 45.515
- type: recall_at_100
value: 70.56700000000001
- type: recall_at_1000
value: 90.306
- type: recall_at_20
value: 51.946999999999996
- type: recall_at_3
value: 31.459
- type: recall_at_5
value: 39.007
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-physics
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: map_at_1
value: 31.156
- type: map_at_10
value: 42.317
- type: map_at_100
value: 43.742
- type: map_at_1000
value: 43.852000000000004
- type: map_at_20
value: 43.147999999999996
- type: map_at_3
value: 38.981
- type: map_at_5
value: 40.827000000000005
- type: mrr_at_1
value: 38.401999999999994
- type: mrr_at_10
value: 48.141
- type: mrr_at_100
value: 48.991
- type: mrr_at_1000
value: 49.03
- type: mrr_at_20
value: 48.665000000000006
- type: mrr_at_3
value: 45.684999999999995
- type: mrr_at_5
value: 47.042
- type: ndcg_at_1
value: 38.401999999999994
- type: ndcg_at_10
value: 48.541000000000004
- type: ndcg_at_100
value: 54.063
- type: ndcg_at_1000
value: 56.005
- type: ndcg_at_20
value: 50.895999999999994
- type: ndcg_at_3
value: 43.352000000000004
- type: ndcg_at_5
value: 45.769
- type: precision_at_1
value: 38.401999999999994
- type: precision_at_10
value: 8.738999999999999
- type: precision_at_100
value: 1.335
- type: precision_at_1000
value: 0.16999999999999998
- type: precision_at_20
value: 5.164
- type: precision_at_3
value: 20.468
- type: precision_at_5
value: 14.437
- type: recall_at_1
value: 31.156
- type: recall_at_10
value: 61.172000000000004
- type: recall_at_100
value: 83.772
- type: recall_at_1000
value: 96.192
- type: recall_at_20
value: 69.223
- type: recall_at_3
value: 46.628
- type: recall_at_5
value: 53.032000000000004
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-programmers
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: map_at_1
value: 26.741999999999997
- type: map_at_10
value: 36.937
- type: map_at_100
value: 38.452
- type: map_at_1000
value: 38.557
- type: map_at_20
value: 37.858999999999995
- type: map_at_3
value: 33.579
- type: map_at_5
value: 35.415
- type: mrr_at_1
value: 32.991
- type: mrr_at_10
value: 42.297000000000004
- type: mrr_at_100
value: 43.282
- type: mrr_at_1000
value: 43.332
- type: mrr_at_20
value: 42.95
- type: mrr_at_3
value: 39.707
- type: mrr_at_5
value: 41.162
- type: ndcg_at_1
value: 32.991
- type: ndcg_at_10
value: 43.004999999999995
- type: ndcg_at_100
value: 49.053000000000004
- type: ndcg_at_1000
value: 51.166999999999994
- type: ndcg_at_20
value: 45.785
- type: ndcg_at_3
value: 37.589
- type: ndcg_at_5
value: 40.007999999999996
- type: precision_at_1
value: 32.991
- type: precision_at_10
value: 8.025
- type: precision_at_100
value: 1.268
- type: precision_at_1000
value: 0.163
- type: precision_at_20
value: 4.846
- type: precision_at_3
value: 17.922
- type: precision_at_5
value: 13.059000000000001
- type: recall_at_1
value: 26.741999999999997
- type: recall_at_10
value: 55.635999999999996
- type: recall_at_100
value: 80.798
- type: recall_at_1000
value: 94.918
- type: recall_at_20
value: 65.577
- type: recall_at_3
value: 40.658
- type: recall_at_5
value: 46.812
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 27.274583333333336
- type: map_at_10
value: 37.04091666666666
- type: map_at_100
value: 38.27966666666667
- type: map_at_1000
value: 38.39383333333334
- type: map_at_20
value: 37.721500000000006
- type: map_at_3
value: 33.937999999999995
- type: map_at_5
value: 35.67974999999999
- type: mrr_at_1
value: 32.40525
- type: mrr_at_10
value: 41.43925000000001
- type: mrr_at_100
value: 42.271
- type: mrr_at_1000
value: 42.32416666666667
- type: mrr_at_20
value: 41.92733333333334
- type: mrr_at_3
value: 38.84941666666666
- type: mrr_at_5
value: 40.379583333333336
- type: ndcg_at_1
value: 32.40525
- type: ndcg_at_10
value: 42.73808333333334
- type: ndcg_at_100
value: 47.88941666666667
- type: ndcg_at_1000
value: 50.05008333333334
- type: ndcg_at_20
value: 44.74183333333334
- type: ndcg_at_3
value: 37.51908333333334
- type: ndcg_at_5
value: 40.01883333333333
- type: precision_at_1
value: 32.40525
- type: precision_at_10
value: 7.5361666666666665
- type: precision_at_100
value: 1.1934166666666666
- type: precision_at_1000
value: 0.1575
- type: precision_at_20
value: 4.429166666666667
- type: precision_at_3
value: 17.24941666666667
- type: precision_at_5
value: 12.362333333333336
- type: recall_at_1
value: 27.274583333333336
- type: recall_at_10
value: 55.21358333333334
- type: recall_at_100
value: 77.60366666666667
- type: recall_at_1000
value: 92.43691666666666
- type: recall_at_20
value: 62.474583333333335
- type: recall_at_3
value: 40.79375
- type: recall_at_5
value: 47.15158333333334
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-stats
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: map_at_1
value: 27.389999999999997
- type: map_at_10
value: 34.107
- type: map_at_100
value: 35.022999999999996
- type: map_at_1000
value: 35.13
- type: map_at_20
value: 34.605999999999995
- type: map_at_3
value: 32.021
- type: map_at_5
value: 32.948
- type: mrr_at_1
value: 30.982
- type: mrr_at_10
value: 37.345
- type: mrr_at_100
value: 38.096999999999994
- type: mrr_at_1000
value: 38.179
- type: mrr_at_20
value: 37.769000000000005
- type: mrr_at_3
value: 35.481
- type: mrr_at_5
value: 36.293
- type: ndcg_at_1
value: 30.982
- type: ndcg_at_10
value: 38.223
- type: ndcg_at_100
value: 42.686
- type: ndcg_at_1000
value: 45.352
- type: ndcg_at_20
value: 39.889
- type: ndcg_at_3
value: 34.259
- type: ndcg_at_5
value: 35.664
- type: precision_at_1
value: 30.982
- type: precision_at_10
value: 5.7669999999999995
- type: precision_at_100
value: 0.877
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_20
value: 3.3360000000000003
- type: precision_at_3
value: 14.264
- type: precision_at_5
value: 9.54
- type: recall_at_1
value: 27.389999999999997
- type: recall_at_10
value: 48.009
- type: recall_at_100
value: 68.244
- type: recall_at_1000
value: 87.943
- type: recall_at_20
value: 54.064
- type: recall_at_3
value: 36.813
- type: recall_at_5
value: 40.321
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-tex
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: map_at_1
value: 18.249000000000002
- type: map_at_10
value: 25.907000000000004
- type: map_at_100
value: 27.105
- type: map_at_1000
value: 27.233
- type: map_at_20
value: 26.541999999999998
- type: map_at_3
value: 23.376
- type: map_at_5
value: 24.673000000000002
- type: mrr_at_1
value: 21.989
- type: mrr_at_10
value: 29.846
- type: mrr_at_100
value: 30.808999999999997
- type: mrr_at_1000
value: 30.885
- type: mrr_at_20
value: 30.384
- type: mrr_at_3
value: 27.46
- type: mrr_at_5
value: 28.758
- type: ndcg_at_1
value: 21.989
- type: ndcg_at_10
value: 30.874000000000002
- type: ndcg_at_100
value: 36.504999999999995
- type: ndcg_at_1000
value: 39.314
- type: ndcg_at_20
value: 32.952999999999996
- type: ndcg_at_3
value: 26.249
- type: ndcg_at_5
value: 28.229
- type: precision_at_1
value: 21.989
- type: precision_at_10
value: 5.705
- type: precision_at_100
value: 0.9990000000000001
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_20
value: 3.4459999999999997
- type: precision_at_3
value: 12.377
- type: precision_at_5
value: 8.961
- type: recall_at_1
value: 18.249000000000002
- type: recall_at_10
value: 41.824
- type: recall_at_100
value: 67.071
- type: recall_at_1000
value: 86.863
- type: recall_at_20
value: 49.573
- type: recall_at_3
value: 28.92
- type: recall_at_5
value: 34.003
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-unix
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: map_at_1
value: 26.602999999999998
- type: map_at_10
value: 36.818
- type: map_at_100
value: 37.894
- type: map_at_1000
value: 37.991
- type: map_at_20
value: 37.389
- type: map_at_3
value: 33.615
- type: map_at_5
value: 35.432
- type: mrr_at_1
value: 31.53
- type: mrr_at_10
value: 41.144
- type: mrr_at_100
value: 41.937999999999995
- type: mrr_at_1000
value: 41.993
- type: mrr_at_20
value: 41.585
- type: mrr_at_3
value: 38.385999999999996
- type: mrr_at_5
value: 39.995000000000005
- type: ndcg_at_1
value: 31.53
- type: ndcg_at_10
value: 42.792
- type: ndcg_at_100
value: 47.749
- type: ndcg_at_1000
value: 49.946
- type: ndcg_at_20
value: 44.59
- type: ndcg_at_3
value: 37.025000000000006
- type: ndcg_at_5
value: 39.811
- type: precision_at_1
value: 31.53
- type: precision_at_10
value: 7.2669999999999995
- type: precision_at_100
value: 1.109
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_20
value: 4.184
- type: precision_at_3
value: 16.791
- type: precision_at_5
value: 12.09
- type: recall_at_1
value: 26.602999999999998
- type: recall_at_10
value: 56.730999999999995
- type: recall_at_100
value: 78.119
- type: recall_at_1000
value: 93.458
- type: recall_at_20
value: 63.00599999999999
- type: recall_at_3
value: 41.306
- type: recall_at_5
value: 48.004999999999995
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-webmasters
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: map_at_1
value: 23.988
- type: map_at_10
value: 33.650999999999996
- type: map_at_100
value: 35.263
- type: map_at_1000
value: 35.481
- type: map_at_20
value: 34.463
- type: map_at_3
value: 30.330000000000002
- type: map_at_5
value: 32.056000000000004
- type: mrr_at_1
value: 29.644
- type: mrr_at_10
value: 38.987
- type: mrr_at_100
value: 39.973
- type: mrr_at_1000
value: 40.013
- type: mrr_at_20
value: 39.553
- type: mrr_at_3
value: 36.001
- type: mrr_at_5
value: 37.869
- type: ndcg_at_1
value: 29.644
- type: ndcg_at_10
value: 40.156
- type: ndcg_at_100
value: 46.244
- type: ndcg_at_1000
value: 48.483
- type: ndcg_at_20
value: 42.311
- type: ndcg_at_3
value: 34.492
- type: ndcg_at_5
value: 37.118
- type: precision_at_1
value: 29.644
- type: precision_at_10
value: 7.925
- type: precision_at_100
value: 1.5890000000000002
- type: precision_at_1000
value: 0.245
- type: precision_at_20
value: 4.97
- type: precision_at_3
value: 16.469
- type: precision_at_5
value: 12.174
- type: recall_at_1
value: 23.988
- type: recall_at_10
value: 52.844
- type: recall_at_100
value: 80.143
- type: recall_at_1000
value: 93.884
- type: recall_at_20
value: 61.050000000000004
- type: recall_at_3
value: 36.720000000000006
- type: recall_at_5
value: 43.614999999999995
- task:
type: Retrieval
dataset:
type: mteb/cqadupstack-wordpress
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 21.947
- type: map_at_10
value: 29.902
- type: map_at_100
value: 30.916
- type: map_at_1000
value: 31.016
- type: map_at_20
value: 30.497999999999998
- type: map_at_3
value: 27.044
- type: map_at_5
value: 28.786
- type: mrr_at_1
value: 23.845
- type: mrr_at_10
value: 32.073
- type: mrr_at_100
value: 32.940999999999995
- type: mrr_at_1000
value: 33.015
- type: mrr_at_20
value: 32.603
- type: mrr_at_3
value: 29.205
- type: mrr_at_5
value: 31.044
- type: ndcg_at_1
value: 23.845
- type: ndcg_at_10
value: 34.79
- type: ndcg_at_100
value: 39.573
- type: ndcg_at_1000
value: 42.163000000000004
- type: ndcg_at_20
value: 36.778
- type: ndcg_at_3
value: 29.326
- type: ndcg_at_5
value: 32.289
- type: precision_at_1
value: 23.845
- type: precision_at_10
value: 5.527
- type: precision_at_100
value: 0.847
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_20
value: 3.2439999999999998
- type: precision_at_3
value: 12.384
- type: precision_at_5
value: 9.205
- type: recall_at_1
value: 21.947
- type: recall_at_10
value: 47.713
- type: recall_at_100
value: 69.299
- type: recall_at_1000
value: 88.593
- type: recall_at_20
value: 55.032000000000004
- type: recall_at_3
value: 33.518
- type: recall_at_5
value: 40.427
- task:
type: Retrieval
dataset:
type: mteb/climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 13.655999999999999
- type: map_at_10
value: 23.954
- type: map_at_100
value: 26.07
- type: map_at_1000
value: 26.266000000000002
- type: map_at_20
value: 25.113000000000003
- type: map_at_3
value: 19.85
- type: map_at_5
value: 21.792
- type: mrr_at_1
value: 31.075000000000003
- type: mrr_at_10
value: 43.480000000000004
- type: mrr_at_100
value: 44.39
- type: mrr_at_1000
value: 44.42
- type: mrr_at_20
value: 44.06
- type: mrr_at_3
value: 40.38
- type: mrr_at_5
value: 42.138999999999996
- type: ndcg_at_1
value: 31.075000000000003
- type: ndcg_at_10
value: 33.129999999999995
- type: ndcg_at_100
value: 40.794000000000004
- type: ndcg_at_1000
value: 44.062
- type: ndcg_at_20
value: 36.223
- type: ndcg_at_3
value: 27.224999999999998
- type: ndcg_at_5
value: 28.969
- type: precision_at_1
value: 31.075000000000003
- type: precision_at_10
value: 10.476
- type: precision_at_100
value: 1.864
- type: precision_at_1000
value: 0.247
- type: precision_at_20
value: 6.593
- type: precision_at_3
value: 20.456
- type: precision_at_5
value: 15.440000000000001
- type: recall_at_1
value: 13.655999999999999
- type: recall_at_10
value: 39.678000000000004
- type: recall_at_100
value: 65.523
- type: recall_at_1000
value: 83.59100000000001
- type: recall_at_20
value: 48.27
- type: recall_at_3
value: 24.863
- type: recall_at_5
value: 30.453999999999997
- task:
type: Retrieval
dataset:
type: mteb/dbpedia
name: MTEB DBPedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 9.139
- type: map_at_10
value: 20.366999999999997
- type: map_at_100
value: 29.755
- type: map_at_1000
value: 31.563999999999997
- type: map_at_20
value: 24.021
- type: map_at_3
value: 14.395
- type: map_at_5
value: 16.853
- type: mrr_at_1
value: 69
- type: mrr_at_10
value: 76.778
- type: mrr_at_100
value: 77.116
- type: mrr_at_1000
value: 77.12299999999999
- type: mrr_at_20
value: 77.046
- type: mrr_at_3
value: 75.208
- type: mrr_at_5
value: 76.146
- type: ndcg_at_1
value: 57.125
- type: ndcg_at_10
value: 42.84
- type: ndcg_at_100
value: 48.686
- type: ndcg_at_1000
value: 56.294
- type: ndcg_at_20
value: 42.717
- type: ndcg_at_3
value: 46.842
- type: ndcg_at_5
value: 44.248
- type: precision_at_1
value: 69
- type: precision_at_10
value: 34.625
- type: precision_at_100
value: 11.468
- type: precision_at_1000
value: 2.17
- type: precision_at_20
value: 26.562
- type: precision_at_3
value: 50.917
- type: precision_at_5
value: 43.35
- type: recall_at_1
value: 9.139
- type: recall_at_10
value: 26.247999999999998
- type: recall_at_100
value: 56.647000000000006
- type: recall_at_1000
value: 80.784
- type: recall_at_20
value: 35.010999999999996
- type: recall_at_3
value: 15.57
- type: recall_at_5
value: 19.198
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 55.93
- type: f1
value: 49.35314406745291
- task:
type: Retrieval
dataset:
type: mteb/fever
name: MTEB FEVER
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 73.198
- type: map_at_10
value: 81.736
- type: map_at_100
value: 82.02000000000001
- type: map_at_1000
value: 82.03399999999999
- type: map_at_20
value: 81.937
- type: map_at_3
value: 80.692
- type: map_at_5
value: 81.369
- type: mrr_at_1
value: 78.803
- type: mrr_at_10
value: 86.144
- type: mrr_at_100
value: 86.263
- type: mrr_at_1000
value: 86.26599999999999
- type: mrr_at_20
value: 86.235
- type: mrr_at_3
value: 85.464
- type: mrr_at_5
value: 85.95
- type: ndcg_at_1
value: 78.803
- type: ndcg_at_10
value: 85.442
- type: ndcg_at_100
value: 86.422
- type: ndcg_at_1000
value: 86.68900000000001
- type: ndcg_at_20
value: 85.996
- type: ndcg_at_3
value: 83.839
- type: ndcg_at_5
value: 84.768
- type: precision_at_1
value: 78.803
- type: precision_at_10
value: 10.261000000000001
- type: precision_at_100
value: 1.0959999999999999
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_20
value: 5.286
- type: precision_at_3
value: 32.083
- type: precision_at_5
value: 19.898
- type: recall_at_1
value: 73.198
- type: recall_at_10
value: 92.42099999999999
- type: recall_at_100
value: 96.28
- type: recall_at_1000
value: 97.995
- type: recall_at_20
value: 94.36
- type: recall_at_3
value: 88.042
- type: recall_at_5
value: 90.429
- task:
type: Retrieval
dataset:
type: mteb/fiqa
name: MTEB FiQA2018
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 21.583
- type: map_at_10
value: 36.503
- type: map_at_100
value: 38.529
- type: map_at_1000
value: 38.701
- type: map_at_20
value: 37.69
- type: map_at_3
value: 31.807000000000002
- type: map_at_5
value: 34.424
- type: mrr_at_1
value: 43.827
- type: mrr_at_10
value: 53.528
- type: mrr_at_100
value: 54.291
- type: mrr_at_1000
value: 54.32599999999999
- type: mrr_at_20
value: 54.064
- type: mrr_at_3
value: 51.25999999999999
- type: mrr_at_5
value: 52.641000000000005
- type: ndcg_at_1
value: 43.827
- type: ndcg_at_10
value: 44.931
- type: ndcg_at_100
value: 51.778999999999996
- type: ndcg_at_1000
value: 54.532000000000004
- type: ndcg_at_20
value: 47.899
- type: ndcg_at_3
value: 41.062
- type: ndcg_at_5
value: 42.33
- type: precision_at_1
value: 43.827
- type: precision_at_10
value: 12.608
- type: precision_at_100
value: 1.974
- type: precision_at_1000
value: 0.247
- type: precision_at_20
value: 7.585
- type: precision_at_3
value: 27.778000000000002
- type: precision_at_5
value: 20.308999999999997
- type: recall_at_1
value: 21.583
- type: recall_at_10
value: 52.332
- type: recall_at_100
value: 77.256
- type: recall_at_1000
value: 93.613
- type: recall_at_20
value: 61.413
- type: recall_at_3
value: 37.477
- type: recall_at_5
value: 44.184
- task:
type: Retrieval
dataset:
type: mteb/hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 39.845000000000006
- type: map_at_10
value: 64.331
- type: map_at_100
value: 65.202
- type: map_at_1000
value: 65.261
- type: map_at_20
value: 64.833
- type: map_at_3
value: 60.663
- type: map_at_5
value: 62.94
- type: mrr_at_1
value: 79.689
- type: mrr_at_10
value: 85.299
- type: mrr_at_100
value: 85.461
- type: mrr_at_1000
value: 85.466
- type: mrr_at_20
value: 85.39099999999999
- type: mrr_at_3
value: 84.396
- type: mrr_at_5
value: 84.974
- type: ndcg_at_1
value: 79.689
- type: ndcg_at_10
value: 72.49
- type: ndcg_at_100
value: 75.485
- type: ndcg_at_1000
value: 76.563
- type: ndcg_at_20
value: 73.707
- type: ndcg_at_3
value: 67.381
- type: ndcg_at_5
value: 70.207
- type: precision_at_1
value: 79.689
- type: precision_at_10
value: 15.267
- type: precision_at_100
value: 1.7610000000000001
- type: precision_at_1000
value: 0.19
- type: precision_at_20
value: 8.024000000000001
- type: precision_at_3
value: 43.363
- type: precision_at_5
value: 28.248
- type: recall_at_1
value: 39.845000000000006
- type: recall_at_10
value: 76.334
- type: recall_at_100
value: 88.042
- type: recall_at_1000
value: 95.09100000000001
- type: recall_at_20
value: 80.243
- type: recall_at_3
value: 65.044
- type: recall_at_5
value: 70.621
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 93.57079999999999
- type: ap
value: 90.50045924786099
- type: f1
value: 93.56673497845476
- task:
type: Retrieval
dataset:
type: mteb/msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: map_at_1
value: 22.212
- type: map_at_10
value: 34.528
- type: map_at_100
value: 35.69
- type: map_at_1000
value: 35.74
- type: map_at_20
value: 35.251
- type: map_at_3
value: 30.628
- type: map_at_5
value: 32.903999999999996
- type: mrr_at_1
value: 22.794
- type: mrr_at_10
value: 35.160000000000004
- type: mrr_at_100
value: 36.251
- type: mrr_at_1000
value: 36.295
- type: mrr_at_20
value: 35.845
- type: mrr_at_3
value: 31.328
- type: mrr_at_5
value: 33.574
- type: ndcg_at_1
value: 22.779
- type: ndcg_at_10
value: 41.461
- type: ndcg_at_100
value: 47.049
- type: ndcg_at_1000
value: 48.254000000000005
- type: ndcg_at_20
value: 44.031
- type: ndcg_at_3
value: 33.561
- type: ndcg_at_5
value: 37.62
- type: precision_at_1
value: 22.779
- type: precision_at_10
value: 6.552
- type: precision_at_100
value: 0.936
- type: precision_at_1000
value: 0.104
- type: precision_at_20
value: 3.8120000000000003
- type: precision_at_3
value: 14.274000000000001
- type: precision_at_5
value: 10.622
- type: recall_at_1
value: 22.212
- type: recall_at_10
value: 62.732
- type: recall_at_100
value: 88.567
- type: recall_at_1000
value: 97.727
- type: recall_at_20
value: 72.733
- type: recall_at_3
value: 41.367
- type: recall_at_5
value: 51.105999999999995
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.24988600091199
- type: f1
value: 94.06064583085202
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (de)
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 74.86052409129333
- type: f1
value: 72.24661442078647
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (es)
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 77.09139426284189
- type: f1
value: 76.3725044443502
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (fr)
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 79.79956154087064
- type: f1
value: 78.41859658401724
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (hi)
config: hi
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 32.785944783076374
- type: f1
value: 31.182237278594922
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (th)
config: th
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 16.654611211573236
- type: f1
value: 12.088413093236642
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 67.51481988144094
- type: f1
value: 49.561420234732125
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (de)
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 42.36122851507467
- type: f1
value: 25.445030887504398
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (es)
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 44.73315543695797
- type: f1
value: 28.42075153540265
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (fr)
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 38.96022549326651
- type: f1
value: 25.926979537146106
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (hi)
config: hi
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 13.578343492291141
- type: f1
value: 8.929295550931657
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (th)
config: th
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 5.396021699819168
- type: f1
value: 1.8587148785378742
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (af)
config: af
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 37.22259583053128
- type: f1
value: 34.63013680947778
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (am)
config: am
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 3.194351042367182
- type: f1
value: 1.2612010214639442
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ar)
config: ar
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 14.26361802286483
- type: f1
value: 13.70260406613821
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (az)
config: az
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 37.21923335574983
- type: f1
value: 36.33553913878251
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (bn)
config: bn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 10.756556825823807
- type: f1
value: 9.676431920229374
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (cy)
config: cy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 32.49831876260928
- type: f1
value: 30.818895782691868
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (da)
config: da
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 40.995292535305985
- type: f1
value: 37.68768183180129
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (de)
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 42.780766644250164
- type: f1
value: 37.82194830667135
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (el)
config: el
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 33.490248823133825
- type: f1
value: 29.71809045584527
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.8836583725622
- type: f1
value: 72.16381047416814
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (es)
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 44.45191661062542
- type: f1
value: 43.46583297093683
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fa)
config: fa
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 26.738399462004036
- type: f1
value: 24.11896530001951
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fi)
config: fi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 38.09683927370545
- type: f1
value: 35.34443269387154
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fr)
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 46.89307330195024
- type: f1
value: 43.47164092514292
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (he)
config: he
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 25.198386012104912
- type: f1
value: 22.446286736401916
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hi)
config: hi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 13.940820443846672
- type: f1
value: 13.257747189396213
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hu)
config: hu
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 34.710827168796236
- type: f1
value: 32.036974696095996
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (hy)
config: hy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 6.711499663752522
- type: f1
value: 5.439441019096591
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (id)
config: id
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 38.56758574310693
- type: f1
value: 36.83183505458304
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (is)
config: is
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 32.22595830531271
- type: f1
value: 30.10972675771159
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (it)
config: it
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 45.79690652320107
- type: f1
value: 44.37143784350453
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ja)
config: ja
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 29.189643577673163
- type: f1
value: 25.43718135312703
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (jv)
config: jv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 34.21990585070612
- type: f1
value: 32.333592263041396
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ka)
config: ka
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 8.890383322125084
- type: f1
value: 7.294310113130201
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (km)
config: km
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 4.616677874915938
- type: f1
value: 1.5028537477535886
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (kn)
config: kn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 3.170813718897109
- type: f1
value: 1.5771411815826382
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ko)
config: ko
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 15.026899798251513
- type: f1
value: 14.077395255366183
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (lv)
config: lv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 36.0995292535306
- type: f1
value: 35.0877269083235
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ml)
config: ml
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 2.9959650302622727
- type: f1
value: 0.8064424547273695
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (mn)
config: mn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 23.301950235373234
- type: f1
value: 22.477376205075853
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ms)
config: ms
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 36.13315400134499
- type: f1
value: 32.99623898888715
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (my)
config: my
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 3.813046402151983
- type: f1
value: 1.1769597223141248
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nb)
config: nb
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 39.66711499663752
- type: f1
value: 35.921474753569214
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (nl)
config: nl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 41.079354404841965
- type: f1
value: 37.57739961852201
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 38.211163416274374
- type: f1
value: 34.89419275422068
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pt)
config: pt
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 45.19838601210491
- type: f1
value: 42.71660225307043
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ro)
config: ro
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 39.48554135843981
- type: f1
value: 37.47402102847154
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ru)
config: ru
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 31.819098856758576
- type: f1
value: 30.120158288509725
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sl)
config: sl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 35.44720914593141
- type: f1
value: 33.74530063536304
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sq)
config: sq
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 36.89307330195024
- type: f1
value: 34.46971619696105
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sv)
config: sv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 38.83322125084062
- type: f1
value: 36.050770344888264
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (sw)
config: sw
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 37.535305985205106
- type: f1
value: 35.21395700670493
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ta)
config: ta
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 7.905178211163418
- type: f1
value: 6.163513326325246
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (te)
config: te
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 2.8480161398789514
- type: f1
value: 1.0163931337986962
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (th)
config: th
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 10.501008742434433
- type: f1
value: 6.858549418430471
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tl)
config: tl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 39.46536650975118
- type: f1
value: 34.96292597328575
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (tr)
config: tr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 37.50168123739071
- type: f1
value: 35.031097269820464
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (ur)
config: ur
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 16.109616677874918
- type: f1
value: 15.884609726192519
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (vi)
config: vi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 36.11297915265636
- type: f1
value: 34.59918716321474
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-CN)
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 18.850033624747812
- type: f1
value: 15.09584388649328
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (zh-TW)
config: zh-TW
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 17.219233355749832
- type: f1
value: 14.538046039008337
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (af)
config: af
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 47.79757901815736
- type: f1
value: 45.078250421193324
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (am)
config: am
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 7.078009414929388
- type: f1
value: 4.0122456300041645
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ar)
config: ar
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 22.831203765971754
- type: f1
value: 20.131610050816555
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (az)
config: az
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 44.952925353059854
- type: f1
value: 42.6865575762921
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (bn)
config: bn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 16.593813046402154
- type: f1
value: 14.087144503044291
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (cy)
config: cy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 37.91862811028917
- type: f1
value: 34.968402727911915
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (da)
config: da
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 51.923335574983184
- type: f1
value: 49.357147840776335
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (de)
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 58.73570948217889
- type: f1
value: 54.92084137819753
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (el)
config: el
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 42.995965030262276
- type: f1
value: 38.47512542753069
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.42098184263618
- type: f1
value: 77.03413816048877
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (es)
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 54.46536650975118
- type: f1
value: 53.08520810835907
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fa)
config: fa
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 30.578345662407525
- type: f1
value: 28.822998245702635
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fi)
config: fi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 43.567585743106925
- type: f1
value: 39.79216651714347
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fr)
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 56.98722259583053
- type: f1
value: 55.31168113501439
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (he)
config: he
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 28.076664425016812
- type: f1
value: 24.927348965627573
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hi)
config: hi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 18.096839273705445
- type: f1
value: 17.386603595777103
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hu)
config: hu
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 41.73839946200403
- type: f1
value: 38.65545902563735
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (hy)
config: hy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 11.536650975117688
- type: f1
value: 10.898336694524854
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (id)
config: id
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 46.9502353732347
- type: f1
value: 44.332561323528644
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (is)
config: is
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 42.777404169468724
- type: f1
value: 39.378117766055354
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (it)
config: it
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 54.6469401479489
- type: f1
value: 52.512025274851794
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ja)
config: ja
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 35.90114324142569
- type: f1
value: 34.90331274712605
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (jv)
config: jv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 42.51176866173504
- type: f1
value: 39.417541845685676
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ka)
config: ka
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 13.799596503026226
- type: f1
value: 11.587556164962251
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (km)
config: km
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 9.44855413584398
- type: f1
value: 4.30711077076907
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (kn)
config: kn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 8.157363819771351
- type: f1
value: 5.5588908736809515
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ko)
config: ko
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 19.909213180901144
- type: f1
value: 18.964761241087984
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (lv)
config: lv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 40.47747141896436
- type: f1
value: 38.17159556642586
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ml)
config: ml
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 6.701412239408204
- type: f1
value: 3.621974155647488
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (mn)
config: mn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 28.55413584398117
- type: f1
value: 26.582548923662753
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ms)
config: ms
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 46.617350369872234
- type: f1
value: 41.35397419267425
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (my)
config: my
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 9.976462676529927
- type: f1
value: 5.900764382768462
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nb)
config: nb
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 50.894418291862806
- type: f1
value: 47.70929403771086
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (nl)
config: nl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 51.761936785474106
- type: f1
value: 48.42797973062516
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 46.21385339609952
- type: f1
value: 43.7081546200347
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pt)
config: pt
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 55.59852051109617
- type: f1
value: 54.19610878409633
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ro)
config: ro
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 50.54135843981169
- type: f1
value: 47.79393938467311
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ru)
config: ru
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 37.73032952252858
- type: f1
value: 35.96450149708041
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sl)
config: sl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 41.67114996637525
- type: f1
value: 40.28283538885605
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sq)
config: sq
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 47.38063214525891
- type: f1
value: 44.93264016007152
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sv)
config: sv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 49.28379287155347
- type: f1
value: 46.25486396570196
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (sw)
config: sw
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 44.18291862811029
- type: f1
value: 41.17519157172804
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ta)
config: ta
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 12.599193006052452
- type: f1
value: 11.129236666238377
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (te)
config: te
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 7.017484868863484
- type: f1
value: 3.9665415549749077
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (th)
config: th
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 19.788164088769335
- type: f1
value: 15.783384761347582
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tl)
config: tl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 50.35978480161398
- type: f1
value: 47.30586047800275
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (tr)
config: tr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 45.484196368527236
- type: f1
value: 44.65101184252231
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (ur)
config: ur
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 23.681909885675857
- type: f1
value: 22.247817138937524
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (vi)
config: vi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 41.63080026899798
- type: f1
value: 39.546896741744
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-CN)
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 30.141223940820446
- type: f1
value: 28.177838960078123
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (zh-TW)
config: zh-TW
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 27.515131136516473
- type: f1
value: 26.514325837594654
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 33.70592767911301
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 31.80943770643908
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.66434973425713
- type: mrr
value: 33.92240574935323
- task:
type: Retrieval
dataset:
type: mteb/nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 6.561999999999999
- type: map_at_10
value: 14.854000000000001
- type: map_at_100
value: 19.187
- type: map_at_1000
value: 20.812
- type: map_at_20
value: 16.744
- type: map_at_3
value: 10.804
- type: map_at_5
value: 12.555
- type: mrr_at_1
value: 48.916
- type: mrr_at_10
value: 57.644
- type: mrr_at_100
value: 58.17
- type: mrr_at_1000
value: 58.206
- type: mrr_at_20
value: 57.969
- type: mrr_at_3
value: 55.36600000000001
- type: mrr_at_5
value: 56.729
- type: ndcg_at_1
value: 46.594
- type: ndcg_at_10
value: 37.897999999999996
- type: ndcg_at_100
value: 35.711
- type: ndcg_at_1000
value: 44.65
- type: ndcg_at_20
value: 35.989
- type: ndcg_at_3
value: 42.869
- type: ndcg_at_5
value: 40.373
- type: precision_at_1
value: 48.297000000000004
- type: precision_at_10
value: 28.297
- type: precision_at_100
value: 9.099
- type: precision_at_1000
value: 2.229
- type: precision_at_20
value: 21.455
- type: precision_at_3
value: 40.248
- type: precision_at_5
value: 34.675
- type: recall_at_1
value: 6.561999999999999
- type: recall_at_10
value: 19.205
- type: recall_at_100
value: 36.742999999999995
- type: recall_at_1000
value: 69.119
- type: recall_at_20
value: 23.787
- type: recall_at_3
value: 11.918
- type: recall_at_5
value: 14.860000000000001
- task:
type: Retrieval
dataset:
type: mteb/nq
name: MTEB NQ
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 30.306
- type: map_at_10
value: 46.916999999999994
- type: map_at_100
value: 47.899
- type: map_at_1000
value: 47.925000000000004
- type: map_at_20
value: 47.583
- type: map_at_3
value: 42.235
- type: map_at_5
value: 45.118
- type: mrr_at_1
value: 34.327999999999996
- type: mrr_at_10
value: 49.248999999999995
- type: mrr_at_100
value: 49.96
- type: mrr_at_1000
value: 49.977
- type: mrr_at_20
value: 49.738
- type: mrr_at_3
value: 45.403999999999996
- type: mrr_at_5
value: 47.786
- type: ndcg_at_1
value: 34.327999999999996
- type: ndcg_at_10
value: 55.123999999999995
- type: ndcg_at_100
value: 59.136
- type: ndcg_at_1000
value: 59.71300000000001
- type: ndcg_at_20
value: 57.232000000000006
- type: ndcg_at_3
value: 46.48
- type: ndcg_at_5
value: 51.237
- type: precision_at_1
value: 34.327999999999996
- type: precision_at_10
value: 9.261
- type: precision_at_100
value: 1.1520000000000001
- type: precision_at_1000
value: 0.121
- type: precision_at_20
value: 5.148
- type: precision_at_3
value: 21.523999999999997
- type: precision_at_5
value: 15.659999999999998
- type: recall_at_1
value: 30.306
- type: recall_at_10
value: 77.65100000000001
- type: recall_at_100
value: 94.841
- type: recall_at_1000
value: 99.119
- type: recall_at_20
value: 85.37599999999999
- type: recall_at_3
value: 55.562
- type: recall_at_5
value: 66.5
- task:
type: Retrieval
dataset:
type: mteb/quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: map_at_1
value: 71.516
- type: map_at_10
value: 85.48400000000001
- type: map_at_100
value: 86.11
- type: map_at_1000
value: 86.124
- type: map_at_20
value: 85.895
- type: map_at_3
value: 82.606
- type: map_at_5
value: 84.395
- type: mrr_at_1
value: 82.38
- type: mrr_at_10
value: 88.31099999999999
- type: mrr_at_100
value: 88.407
- type: mrr_at_1000
value: 88.407
- type: mrr_at_20
value: 88.385
- type: mrr_at_3
value: 87.42699999999999
- type: mrr_at_5
value: 88.034
- type: ndcg_at_1
value: 82.39999999999999
- type: ndcg_at_10
value: 89.07300000000001
- type: ndcg_at_100
value: 90.23400000000001
- type: ndcg_at_1000
value: 90.304
- type: ndcg_at_20
value: 89.714
- type: ndcg_at_3
value: 86.42699999999999
- type: ndcg_at_5
value: 87.856
- type: precision_at_1
value: 82.39999999999999
- type: precision_at_10
value: 13.499
- type: precision_at_100
value: 1.536
- type: precision_at_1000
value: 0.157
- type: precision_at_20
value: 7.155
- type: precision_at_3
value: 37.846999999999994
- type: precision_at_5
value: 24.778
- type: recall_at_1
value: 71.516
- type: recall_at_10
value: 95.831
- type: recall_at_100
value: 99.714
- type: recall_at_1000
value: 99.979
- type: recall_at_20
value: 97.87599999999999
- type: recall_at_3
value: 88.08
- type: recall_at_5
value: 92.285
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 61.3760407207699
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 65.28621066626943
- task:
type: Retrieval
dataset:
type: mteb/scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: map_at_1
value: 5.163
- type: map_at_10
value: 14.377
- type: map_at_100
value: 17.177
- type: map_at_1000
value: 17.588
- type: map_at_20
value: 15.827
- type: map_at_3
value: 9.879
- type: map_at_5
value: 12.133
- type: mrr_at_1
value: 25.5
- type: mrr_at_10
value: 38.435
- type: mrr_at_100
value: 39.573
- type: mrr_at_1000
value: 39.606
- type: mrr_at_20
value: 39.134
- type: mrr_at_3
value: 34.666999999999994
- type: mrr_at_5
value: 37.117
- type: ndcg_at_1
value: 25.5
- type: ndcg_at_10
value: 23.688000000000002
- type: ndcg_at_100
value: 33.849000000000004
- type: ndcg_at_1000
value: 39.879
- type: ndcg_at_20
value: 27.36
- type: ndcg_at_3
value: 22.009999999999998
- type: ndcg_at_5
value: 19.691
- type: precision_at_1
value: 25.5
- type: precision_at_10
value: 12.540000000000001
- type: precision_at_100
value: 2.721
- type: precision_at_1000
value: 0.415
- type: precision_at_20
value: 8.385
- type: precision_at_3
value: 21.099999999999998
- type: precision_at_5
value: 17.84
- type: recall_at_1
value: 5.163
- type: recall_at_10
value: 25.405
- type: recall_at_100
value: 55.213
- type: recall_at_1000
value: 84.243
- type: recall_at_20
value: 34.003
- type: recall_at_3
value: 12.837000000000002
- type: recall_at_5
value: 18.096999999999998
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 87.64406884822948
- type: cos_sim_spearman
value: 83.00239648251724
- type: euclidean_pearson
value: 85.03347205351844
- type: euclidean_spearman
value: 83.00240733538445
- type: manhattan_pearson
value: 85.0312758694447
- type: manhattan_spearman
value: 82.99430696077589
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 87.68832340658764
- type: cos_sim_spearman
value: 79.21679373212476
- type: euclidean_pearson
value: 85.17094885886415
- type: euclidean_spearman
value: 79.21421345946399
- type: manhattan_pearson
value: 85.17409319145995
- type: manhattan_spearman
value: 79.20992207976401
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 88.43733084958856
- type: cos_sim_spearman
value: 89.43082089321751
- type: euclidean_pearson
value: 88.63286785416938
- type: euclidean_spearman
value: 89.43082081372343
- type: manhattan_pearson
value: 88.62969346368385
- type: manhattan_spearman
value: 89.43131586189746
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 86.62185532014894
- type: cos_sim_spearman
value: 84.7923120886599
- type: euclidean_pearson
value: 85.99786490539253
- type: euclidean_spearman
value: 84.79231064318844
- type: manhattan_pearson
value: 85.97647892920392
- type: manhattan_spearman
value: 84.76865232132103
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 88.39303997282114
- type: cos_sim_spearman
value: 89.54273264876765
- type: euclidean_pearson
value: 88.8848627924181
- type: euclidean_spearman
value: 89.54275013645078
- type: manhattan_pearson
value: 88.86926987108802
- type: manhattan_spearman
value: 89.53259197721715
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.21814352466886
- type: cos_sim_spearman
value: 86.68505223422434
- type: euclidean_pearson
value: 86.07422446469991
- type: euclidean_spearman
value: 86.68505161067375
- type: manhattan_pearson
value: 86.05114200797293
- type: manhattan_spearman
value: 86.6587670422703
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (ko-ko)
config: ko-ko
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 39.17871768366095
- type: cos_sim_spearman
value: 39.78510424960567
- type: euclidean_pearson
value: 41.65680175653682
- type: euclidean_spearman
value: 39.78538944779548
- type: manhattan_pearson
value: 41.567603690394755
- type: manhattan_spearman
value: 39.71393388259443
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (ar-ar)
config: ar-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 49.26766904195114
- type: cos_sim_spearman
value: 46.79722787057151
- type: euclidean_pearson
value: 51.2329334717446
- type: euclidean_spearman
value: 46.7920623095072
- type: manhattan_pearson
value: 51.26488560860826
- type: manhattan_spearman
value: 47.00400318665492
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-ar)
config: en-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 1.6821294132202447
- type: cos_sim_spearman
value: -0.7813676799492025
- type: euclidean_pearson
value: 1.9197388753860283
- type: euclidean_spearman
value: -0.7813676799492025
- type: manhattan_pearson
value: 2.209862430499871
- type: manhattan_spearman
value: -0.863014010062456
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-de)
config: en-de
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 48.76382428941107
- type: cos_sim_spearman
value: 47.50280322999196
- type: euclidean_pearson
value: 48.73919143974209
- type: euclidean_spearman
value: 47.50280322999196
- type: manhattan_pearson
value: 48.76291223862666
- type: manhattan_spearman
value: 47.51318193687094
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.6579390263212
- type: cos_sim_spearman
value: 89.64423556388047
- type: euclidean_pearson
value: 90.1160733522703
- type: euclidean_spearman
value: 89.64423556388047
- type: manhattan_pearson
value: 90.1528407376387
- type: manhattan_spearman
value: 89.61290724496793
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-tr)
config: en-tr
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 6.717092266815236
- type: cos_sim_spearman
value: 4.180543503488665
- type: euclidean_pearson
value: 7.120267092048099
- type: euclidean_spearman
value: 4.180543503488665
- type: manhattan_pearson
value: 6.396237465828514
- type: manhattan_spearman
value: 3.61244941411957
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-en)
config: es-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 44.36476614938953
- type: cos_sim_spearman
value: 44.265723809500685
- type: euclidean_pearson
value: 44.61551298711104
- type: euclidean_spearman
value: 44.265723809500685
- type: manhattan_pearson
value: 44.54302374682193
- type: manhattan_spearman
value: 44.08642490624185
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (es-es)
config: es-es
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 79.64871991975828
- type: cos_sim_spearman
value: 79.21979030014373
- type: euclidean_pearson
value: 81.8672798988218
- type: euclidean_spearman
value: 79.21950130108661
- type: manhattan_pearson
value: 82.02131606326583
- type: manhattan_spearman
value: 79.44848373553044
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (fr-en)
config: fr-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 48.73898658957231
- type: cos_sim_spearman
value: 47.15192605817168
- type: euclidean_pearson
value: 49.11990573381456
- type: euclidean_spearman
value: 47.15192605817168
- type: manhattan_pearson
value: 48.5694400358235
- type: manhattan_spearman
value: 46.651326429708135
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (it-en)
config: it-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 44.42168074232218
- type: cos_sim_spearman
value: 42.64799010889372
- type: euclidean_pearson
value: 44.41376048324183
- type: euclidean_spearman
value: 42.64799010889372
- type: manhattan_pearson
value: 44.724522621427546
- type: manhattan_spearman
value: 42.60912761758016
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (nl-en)
config: nl-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 40.55050173163197
- type: cos_sim_spearman
value: 36.59720399843921
- type: euclidean_pearson
value: 41.49402389245919
- type: euclidean_spearman
value: 36.59720399843921
- type: manhattan_pearson
value: 41.877514420153666
- type: manhattan_spearman
value: 36.782790653297695
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 69.44405106094861
- type: cos_sim_spearman
value: 70.25621893108706
- type: euclidean_pearson
value: 71.15726637696066
- type: euclidean_spearman
value: 70.25621893108706
- type: manhattan_pearson
value: 71.28565265298322
- type: manhattan_spearman
value: 70.30317892414027
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de)
config: de
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 34.56638014500804
- type: cos_sim_spearman
value: 39.48672765878819
- type: euclidean_pearson
value: 31.61811391543846
- type: euclidean_spearman
value: 39.48672765878819
- type: manhattan_pearson
value: 31.839117286689977
- type: manhattan_spearman
value: 39.71519891403971
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es)
config: es
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 53.72389957326714
- type: cos_sim_spearman
value: 59.47018781803598
- type: euclidean_pearson
value: 57.02101112722141
- type: euclidean_spearman
value: 59.47018781803598
- type: manhattan_pearson
value: 57.16531255049132
- type: manhattan_spearman
value: 59.57320508684436
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl)
config: pl
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 24.14602533311477
- type: cos_sim_spearman
value: 35.38039329704056
- type: euclidean_pearson
value: 13.540543553763765
- type: euclidean_spearman
value: 35.38039329704056
- type: manhattan_pearson
value: 13.566377379303256
- type: manhattan_spearman
value: 35.88351047224126
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (tr)
config: tr
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 39.07697432450346
- type: cos_sim_spearman
value: 45.65479772235109
- type: euclidean_pearson
value: 41.68913259791294
- type: euclidean_spearman
value: 45.65479772235109
- type: manhattan_pearson
value: 41.58872552392231
- type: manhattan_spearman
value: 45.462070534023404
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (ar)
config: ar
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 23.917322166825183
- type: cos_sim_spearman
value: 25.06042767518008
- type: euclidean_pearson
value: 24.29850435278771
- type: euclidean_spearman
value: 25.06042767518008
- type: manhattan_pearson
value: 24.461400062927154
- type: manhattan_spearman
value: 25.285239684773046
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (ru)
config: ru
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 20.39987623162105
- type: cos_sim_spearman
value: 30.62427846964406
- type: euclidean_pearson
value: 20.817950942480323
- type: euclidean_spearman
value: 30.618700916425222
- type: manhattan_pearson
value: 20.756787430880788
- type: manhattan_spearman
value: 30.813116243628436
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh)
config: zh
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 43.838363041373974
- type: cos_sim_spearman
value: 54.17598089882719
- type: euclidean_pearson
value: 47.51044033919419
- type: euclidean_spearman
value: 54.17598089882719
- type: manhattan_pearson
value: 47.54911083403354
- type: manhattan_spearman
value: 54.2562151204606
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (fr)
config: fr
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 77.69372699157654
- type: cos_sim_spearman
value: 79.88201388457435
- type: euclidean_pearson
value: 78.81259581302578
- type: euclidean_spearman
value: 79.88201388457435
- type: manhattan_pearson
value: 78.85098508555477
- type: manhattan_spearman
value: 80.20154858554835
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-en)
config: de-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 51.83713469138834
- type: cos_sim_spearman
value: 54.2205845288082
- type: euclidean_pearson
value: 54.14828396506985
- type: euclidean_spearman
value: 54.2205845288082
- type: manhattan_pearson
value: 54.10701855179347
- type: manhattan_spearman
value: 54.30261135461622
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es-en)
config: es-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 61.59147752554915
- type: cos_sim_spearman
value: 66.65350021824162
- type: euclidean_pearson
value: 62.577915098325434
- type: euclidean_spearman
value: 66.65350021824162
- type: manhattan_pearson
value: 62.22817675366819
- type: manhattan_spearman
value: 66.35054389546214
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (it)
config: it
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 65.23775897743552
- type: cos_sim_spearman
value: 68.1509652709288
- type: euclidean_pearson
value: 66.17577980319408
- type: euclidean_spearman
value: 68.1509652709288
- type: manhattan_pearson
value: 66.40051933918704
- type: manhattan_spearman
value: 68.37138808382802
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl-en)
config: pl-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 61.943863830043725
- type: cos_sim_spearman
value: 62.699440972016774
- type: euclidean_pearson
value: 62.810366501196
- type: euclidean_spearman
value: 62.699440972016774
- type: manhattan_pearson
value: 63.13065659868621
- type: manhattan_spearman
value: 63.314141373703215
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (zh-en)
config: zh-en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 48.1108866326284
- type: cos_sim_spearman
value: 49.25274096772371
- type: euclidean_pearson
value: 47.87203797435136
- type: euclidean_spearman
value: 49.25274096772371
- type: manhattan_pearson
value: 47.39927722979605
- type: manhattan_spearman
value: 48.76629586560382
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (es-it)
config: es-it
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 58.58401639298775
- type: cos_sim_spearman
value: 64.37272828346495
- type: euclidean_pearson
value: 61.03680632288844
- type: euclidean_spearman
value: 64.37272828346495
- type: manhattan_pearson
value: 61.381331848220675
- type: manhattan_spearman
value: 65.01053960017909
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-fr)
config: de-fr
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 44.374682063416735
- type: cos_sim_spearman
value: 48.907776246550185
- type: euclidean_pearson
value: 45.473260322201284
- type: euclidean_spearman
value: 48.907776246550185
- type: manhattan_pearson
value: 46.051779591771854
- type: manhattan_spearman
value: 49.69297213757249
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (de-pl)
config: de-pl
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 31.55497030143048
- type: cos_sim_spearman
value: 33.042073055100396
- type: euclidean_pearson
value: 33.548707962408955
- type: euclidean_spearman
value: 33.042073055100396
- type: manhattan_pearson
value: 31.704989941561873
- type: manhattan_spearman
value: 31.56395608711827
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (fr-pl)
config: fr-pl
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 51.253093232573036
- type: cos_sim_spearman
value: 39.440531887330785
- type: euclidean_pearson
value: 51.42758694144294
- type: euclidean_spearman
value: 39.440531887330785
- type: manhattan_pearson
value: 49.623915715149394
- type: manhattan_spearman
value: 39.440531887330785
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.61260941646887
- type: cos_sim_spearman
value: 88.96384726759047
- type: euclidean_pearson
value: 88.72268994912045
- type: euclidean_spearman
value: 88.96384726759047
- type: manhattan_pearson
value: 88.72080954591475
- type: manhattan_spearman
value: 88.92379960545995
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.64768404690723
- type: mrr
value: 96.25675341361615
- task:
type: Retrieval
dataset:
type: mteb/scifact
name: MTEB SciFact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 61.194
- type: map_at_10
value: 70.62899999999999
- type: map_at_100
value: 71.119
- type: map_at_1000
value: 71.14200000000001
- type: map_at_20
value: 71.033
- type: map_at_3
value: 67.51899999999999
- type: map_at_5
value: 69.215
- type: mrr_at_1
value: 63.666999999999994
- type: mrr_at_10
value: 71.456
- type: mrr_at_100
value: 71.844
- type: mrr_at_1000
value: 71.866
- type: mrr_at_20
value: 71.769
- type: mrr_at_3
value: 69.167
- type: mrr_at_5
value: 70.39999999999999
- type: ndcg_at_1
value: 63.666999999999994
- type: ndcg_at_10
value: 75.14
- type: ndcg_at_100
value: 77.071
- type: ndcg_at_1000
value: 77.55199999999999
- type: ndcg_at_20
value: 76.491
- type: ndcg_at_3
value: 69.836
- type: ndcg_at_5
value: 72.263
- type: precision_at_1
value: 63.666999999999994
- type: precision_at_10
value: 10
- type: precision_at_100
value: 1.093
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_20
value: 5.3
- type: precision_at_3
value: 27
- type: precision_at_5
value: 17.867
- type: recall_at_1
value: 61.194
- type: recall_at_10
value: 88.156
- type: recall_at_100
value: 96.5
- type: recall_at_1000
value: 100
- type: recall_at_20
value: 93.389
- type: recall_at_3
value: 73.839
- type: recall_at_5
value: 79.828
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.87425742574257
- type: cos_sim_ap
value: 96.97141655369937
- type: cos_sim_f1
value: 93.6910084451068
- type: cos_sim_precision
value: 93.0898321816387
- type: cos_sim_recall
value: 94.3
- type: dot_accuracy
value: 99.87425742574257
- type: dot_ap
value: 96.97141655369938
- type: dot_f1
value: 93.6910084451068
- type: dot_precision
value: 93.0898321816387
- type: dot_recall
value: 94.3
- type: euclidean_accuracy
value: 99.87425742574257
- type: euclidean_ap
value: 96.97141655369938
- type: euclidean_f1
value: 93.6910084451068
- type: euclidean_precision
value: 93.0898321816387
- type: euclidean_recall
value: 94.3
- type: manhattan_accuracy
value: 99.87425742574257
- type: manhattan_ap
value: 96.98252972861131
- type: manhattan_f1
value: 93.68473396320238
- type: manhattan_precision
value: 93.17507418397626
- type: manhattan_recall
value: 94.19999999999999
- type: max_accuracy
value: 99.87425742574257
- type: max_ap
value: 96.98252972861131
- type: max_f1
value: 93.6910084451068
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 66.5976926394361
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.3221929214798
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.28322662897131
- type: mrr
value: 56.223620129870135
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.176396304511282
- type: cos_sim_spearman
value: 32.11989671564906
- type: dot_pearson
value: 31.17639740597169
- type: dot_spearman
value: 32.145586989831564
- task:
type: Retrieval
dataset:
type: mteb/trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: map_at_1
value: 0.186
- type: map_at_10
value: 1.659
- type: map_at_100
value: 9.224
- type: map_at_1000
value: 22.506999999999998
- type: map_at_20
value: 2.937
- type: map_at_3
value: 0.5539999999999999
- type: map_at_5
value: 0.8920000000000001
- type: mrr_at_1
value: 72
- type: mrr_at_10
value: 82.633
- type: mrr_at_100
value: 82.633
- type: mrr_at_1000
value: 82.633
- type: mrr_at_20
value: 82.633
- type: mrr_at_3
value: 80.333
- type: mrr_at_5
value: 82.633
- type: ndcg_at_1
value: 69
- type: ndcg_at_10
value: 67.327
- type: ndcg_at_100
value: 51.626000000000005
- type: ndcg_at_1000
value: 47.396
- type: ndcg_at_20
value: 63.665000000000006
- type: ndcg_at_3
value: 68.95
- type: ndcg_at_5
value: 69.241
- type: precision_at_1
value: 72
- type: precision_at_10
value: 71.6
- type: precision_at_100
value: 53.22
- type: precision_at_1000
value: 20.721999999999998
- type: precision_at_20
value: 67.30000000000001
- type: precision_at_3
value: 72.667
- type: precision_at_5
value: 74
- type: recall_at_1
value: 0.186
- type: recall_at_10
value: 1.932
- type: recall_at_100
value: 12.883
- type: recall_at_1000
value: 44.511
- type: recall_at_20
value: 3.583
- type: recall_at_3
value: 0.601
- type: recall_at_5
value: 1
- task:
type: Retrieval
dataset:
type: mteb/touche2020
name: MTEB Touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 2.308
- type: map_at_10
value: 9.744
- type: map_at_100
value: 15.859000000000002
- type: map_at_1000
value: 17.396
- type: map_at_20
value: 12.49
- type: map_at_3
value: 4.848
- type: map_at_5
value: 6.912999999999999
- type: mrr_at_1
value: 32.653
- type: mrr_at_10
value: 47.207
- type: mrr_at_100
value: 48.116
- type: mrr_at_1000
value: 48.116
- type: mrr_at_20
value: 47.735
- type: mrr_at_3
value: 42.857
- type: mrr_at_5
value: 44.285999999999994
- type: ndcg_at_1
value: 28.571
- type: ndcg_at_10
value: 24.421
- type: ndcg_at_100
value: 35.961
- type: ndcg_at_1000
value: 47.541
- type: ndcg_at_20
value: 25.999
- type: ndcg_at_3
value: 25.333
- type: ndcg_at_5
value: 25.532
- type: precision_at_1
value: 32.653
- type: precision_at_10
value: 22.448999999999998
- type: precision_at_100
value: 7.571
- type: precision_at_1000
value: 1.5310000000000001
- type: precision_at_20
value: 17.959
- type: precision_at_3
value: 26.531
- type: precision_at_5
value: 26.122
- type: recall_at_1
value: 2.308
- type: recall_at_10
value: 16.075
- type: recall_at_100
value: 47.357
- type: recall_at_1000
value: 82.659
- type: recall_at_20
value: 24.554000000000002
- type: recall_at_3
value: 5.909
- type: recall_at_5
value: 9.718
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 67.2998046875
- type: ap
value: 12.796222498684031
- type: f1
value: 51.7465070845071
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 61.76004527447652
- type: f1
value: 61.88985723942393
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 52.69229715788263
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.42325803182929
- type: cos_sim_ap
value: 78.29203513753492
- type: cos_sim_f1
value: 71.33160557818093
- type: cos_sim_precision
value: 67.00672385810341
- type: cos_sim_recall
value: 76.2532981530343
- type: dot_accuracy
value: 87.42325803182929
- type: dot_ap
value: 78.29208368244002
- type: dot_f1
value: 71.33160557818093
- type: dot_precision
value: 67.00672385810341
- type: dot_recall
value: 76.2532981530343
- type: euclidean_accuracy
value: 87.42325803182929
- type: euclidean_ap
value: 78.29202838891078
- type: euclidean_f1
value: 71.33160557818093
- type: euclidean_precision
value: 67.00672385810341
- type: euclidean_recall
value: 76.2532981530343
- type: manhattan_accuracy
value: 87.42325803182929
- type: manhattan_ap
value: 78.23964459648822
- type: manhattan_f1
value: 71.1651728553137
- type: manhattan_precision
value: 69.12935323383084
- type: manhattan_recall
value: 73.3245382585752
- type: max_accuracy
value: 87.42325803182929
- type: max_ap
value: 78.29208368244002
- type: max_f1
value: 71.33160557818093
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.00725734466566
- type: cos_sim_ap
value: 86.1594112416402
- type: cos_sim_f1
value: 78.544568993303
- type: cos_sim_precision
value: 73.42484097756947
- type: cos_sim_recall
value: 84.43178318447798
- type: dot_accuracy
value: 89.00725734466566
- type: dot_ap
value: 86.15940795129771
- type: dot_f1
value: 78.544568993303
- type: dot_precision
value: 73.42484097756947
- type: dot_recall
value: 84.43178318447798
- type: euclidean_accuracy
value: 89.00725734466566
- type: euclidean_ap
value: 86.15939689541806
- type: euclidean_f1
value: 78.544568993303
- type: euclidean_precision
value: 73.42484097756947
- type: euclidean_recall
value: 84.43178318447798
- type: manhattan_accuracy
value: 88.97426941436721
- type: manhattan_ap
value: 86.14154348065739
- type: manhattan_f1
value: 78.53991175290814
- type: manhattan_precision
value: 74.60339452719086
- type: manhattan_recall
value: 82.91499846011703
- type: max_accuracy
value: 89.00725734466566
- type: max_ap
value: 86.1594112416402
- type: max_f1
value: 78.544568993303