MUG-B-1.6 / README.md
Labib11's picture
Update README.md
ee7247c verified
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: MUG-B-1.6
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 74.04047976011994
          - type: ap
            value: 23.622442298323236
          - type: f1
            value: 61.681362134359354
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 72.38805970149255
          - type: ap
            value: 35.14527522183942
          - type: f1
            value: 66.40004634079556
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 54.3254817987152
          - type: ap
            value: 71.95259605308317
          - type: f1
            value: 52.50731386267296
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 56.33832976445397
          - type: ap
            value: 12.671021199223937
          - type: f1
            value: 46.127586182990605
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.70805000000001
          - type: ap
            value: 90.58639913354553
          - type: f1
            value: 93.69822635061847
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 50.85000000000001
          - type: f1
            value: 49.80013009020246
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 27.203999999999994
          - type: f1
            value: 26.60134413072989
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 34.878
          - type: f1
            value: 33.072592092252314
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 31.557999999999993
          - type: f1
            value: 30.866094552542624
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 22.706
          - type: f1
            value: 22.23195837325246
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 22.349999999999998
          - type: f1
            value: 21.80183891680617
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 41.892
          - type: map_at_10
            value: 57.989999999999995
          - type: map_at_100
            value: 58.45
          - type: map_at_1000
            value: 58.453
          - type: map_at_20
            value: 58.392999999999994
          - type: map_at_3
            value: 53.746
          - type: map_at_5
            value: 56.566
          - type: mrr_at_1
            value: 43.314
          - type: mrr_at_10
            value: 58.535000000000004
          - type: mrr_at_100
            value: 58.975
          - type: mrr_at_1000
            value: 58.977999999999994
          - type: mrr_at_20
            value: 58.916999999999994
          - type: mrr_at_3
            value: 54.303000000000004
          - type: mrr_at_5
            value: 57.055
          - type: ndcg_at_1
            value: 41.892
          - type: ndcg_at_10
            value: 66.176
          - type: ndcg_at_100
            value: 67.958
          - type: ndcg_at_1000
            value: 68.00699999999999
          - type: ndcg_at_20
            value: 67.565
          - type: ndcg_at_3
            value: 57.691
          - type: ndcg_at_5
            value: 62.766
          - type: precision_at_1
            value: 41.892
          - type: precision_at_10
            value: 9.189
          - type: precision_at_100
            value: 0.993
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.861
          - type: precision_at_3
            value: 23.044
          - type: precision_at_5
            value: 16.287
          - type: recall_at_1
            value: 41.892
          - type: recall_at_10
            value: 91.892
          - type: recall_at_100
            value: 99.289
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_20
            value: 97.226
          - type: recall_at_3
            value: 69.132
          - type: recall_at_5
            value: 81.437
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 49.03486273664411
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 43.04797567338598
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 64.29499572176032
          - type: mrr
            value: 77.28861627753592
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 89.53248242133246
          - type: cos_sim_spearman
            value: 88.38032705871927
          - type: euclidean_pearson
            value: 87.77994445569084
          - type: euclidean_spearman
            value: 88.38032705871927
          - type: manhattan_pearson
            value: 87.52369210088627
          - type: manhattan_spearman
            value: 88.27972235673434
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 85.4090909090909
          - type: f1
            value: 84.87743757972068
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 39.73840151083438
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 36.565075977998966
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 33.082
          - type: map_at_10
            value: 44.787
          - type: map_at_100
            value: 46.322
          - type: map_at_1000
            value: 46.446
          - type: map_at_20
            value: 45.572
          - type: map_at_3
            value: 40.913
          - type: map_at_5
            value: 42.922
          - type: mrr_at_1
            value: 40.629
          - type: mrr_at_10
            value: 51.119
          - type: mrr_at_100
            value: 51.783
          - type: mrr_at_1000
            value: 51.82
          - type: mrr_at_20
            value: 51.49700000000001
          - type: mrr_at_3
            value: 48.355
          - type: mrr_at_5
            value: 49.979
          - type: ndcg_at_1
            value: 40.629
          - type: ndcg_at_10
            value: 51.647
          - type: ndcg_at_100
            value: 56.923
          - type: ndcg_at_1000
            value: 58.682
          - type: ndcg_at_20
            value: 53.457
          - type: ndcg_at_3
            value: 46.065
          - type: ndcg_at_5
            value: 48.352000000000004
          - type: precision_at_1
            value: 40.629
          - type: precision_at_10
            value: 10.072000000000001
          - type: precision_at_100
            value: 1.5939999999999999
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_20
            value: 5.908
          - type: precision_at_3
            value: 22.222
          - type: precision_at_5
            value: 15.937000000000001
          - type: recall_at_1
            value: 33.082
          - type: recall_at_10
            value: 64.55300000000001
          - type: recall_at_100
            value: 86.86399999999999
          - type: recall_at_1000
            value: 97.667
          - type: recall_at_20
            value: 70.988
          - type: recall_at_3
            value: 48.067
          - type: recall_at_5
            value: 54.763
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 32.272
          - type: map_at_10
            value: 42.620000000000005
          - type: map_at_100
            value: 43.936
          - type: map_at_1000
            value: 44.066
          - type: map_at_20
            value: 43.349
          - type: map_at_3
            value: 39.458
          - type: map_at_5
            value: 41.351
          - type: mrr_at_1
            value: 40.127
          - type: mrr_at_10
            value: 48.437000000000005
          - type: mrr_at_100
            value: 49.096000000000004
          - type: mrr_at_1000
            value: 49.14
          - type: mrr_at_20
            value: 48.847
          - type: mrr_at_3
            value: 46.21
          - type: mrr_at_5
            value: 47.561
          - type: ndcg_at_1
            value: 40.127
          - type: ndcg_at_10
            value: 48.209999999999994
          - type: ndcg_at_100
            value: 52.632
          - type: ndcg_at_1000
            value: 54.59
          - type: ndcg_at_20
            value: 50.012
          - type: ndcg_at_3
            value: 43.996
          - type: ndcg_at_5
            value: 46.122
          - type: precision_at_1
            value: 40.127
          - type: precision_at_10
            value: 9.051
          - type: precision_at_100
            value: 1.465
          - type: precision_at_1000
            value: 0.193
          - type: precision_at_20
            value: 5.35
          - type: precision_at_3
            value: 21.104
          - type: precision_at_5
            value: 15.146
          - type: recall_at_1
            value: 32.272
          - type: recall_at_10
            value: 57.870999999999995
          - type: recall_at_100
            value: 76.211
          - type: recall_at_1000
            value: 88.389
          - type: recall_at_20
            value: 64.354
          - type: recall_at_3
            value: 45.426
          - type: recall_at_5
            value: 51.23799999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 40.261
          - type: map_at_10
            value: 53.400000000000006
          - type: map_at_100
            value: 54.42399999999999
          - type: map_at_1000
            value: 54.473000000000006
          - type: map_at_20
            value: 54.052
          - type: map_at_3
            value: 49.763000000000005
          - type: map_at_5
            value: 51.878
          - type: mrr_at_1
            value: 46.019
          - type: mrr_at_10
            value: 56.653
          - type: mrr_at_100
            value: 57.28
          - type: mrr_at_1000
            value: 57.303000000000004
          - type: mrr_at_20
            value: 57.057
          - type: mrr_at_3
            value: 53.971000000000004
          - type: mrr_at_5
            value: 55.632000000000005
          - type: ndcg_at_1
            value: 46.019
          - type: ndcg_at_10
            value: 59.597
          - type: ndcg_at_100
            value: 63.452
          - type: ndcg_at_1000
            value: 64.434
          - type: ndcg_at_20
            value: 61.404
          - type: ndcg_at_3
            value: 53.620999999999995
          - type: ndcg_at_5
            value: 56.688
          - type: precision_at_1
            value: 46.019
          - type: precision_at_10
            value: 9.748999999999999
          - type: precision_at_100
            value: 1.261
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_20
            value: 5.436
          - type: precision_at_3
            value: 24.075
          - type: precision_at_5
            value: 16.715
          - type: recall_at_1
            value: 40.261
          - type: recall_at_10
            value: 74.522
          - type: recall_at_100
            value: 91.014
          - type: recall_at_1000
            value: 98.017
          - type: recall_at_20
            value: 81.186
          - type: recall_at_3
            value: 58.72500000000001
          - type: recall_at_5
            value: 66.23599999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 27.666
          - type: map_at_10
            value: 36.744
          - type: map_at_100
            value: 37.794
          - type: map_at_1000
            value: 37.865
          - type: map_at_20
            value: 37.336999999999996
          - type: map_at_3
            value: 33.833999999999996
          - type: map_at_5
            value: 35.61
          - type: mrr_at_1
            value: 29.944
          - type: mrr_at_10
            value: 38.838
          - type: mrr_at_100
            value: 39.765
          - type: mrr_at_1000
            value: 39.818999999999996
          - type: mrr_at_20
            value: 39.373000000000005
          - type: mrr_at_3
            value: 36.234
          - type: mrr_at_5
            value: 37.844
          - type: ndcg_at_1
            value: 29.944
          - type: ndcg_at_10
            value: 41.986000000000004
          - type: ndcg_at_100
            value: 47.05
          - type: ndcg_at_1000
            value: 48.897
          - type: ndcg_at_20
            value: 43.989
          - type: ndcg_at_3
            value: 36.452
          - type: ndcg_at_5
            value: 39.395
          - type: precision_at_1
            value: 29.944
          - type: precision_at_10
            value: 6.4750000000000005
          - type: precision_at_100
            value: 0.946
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_20
            value: 3.6839999999999997
          - type: precision_at_3
            value: 15.443000000000001
          - type: precision_at_5
            value: 10.96
          - type: recall_at_1
            value: 27.666
          - type: recall_at_10
            value: 56.172999999999995
          - type: recall_at_100
            value: 79.142
          - type: recall_at_1000
            value: 93.013
          - type: recall_at_20
            value: 63.695
          - type: recall_at_3
            value: 41.285
          - type: recall_at_5
            value: 48.36
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 17.939
          - type: map_at_10
            value: 27.301
          - type: map_at_100
            value: 28.485
          - type: map_at_1000
            value: 28.616000000000003
          - type: map_at_20
            value: 27.843
          - type: map_at_3
            value: 24.342
          - type: map_at_5
            value: 26.259
          - type: mrr_at_1
            value: 22.761
          - type: mrr_at_10
            value: 32.391
          - type: mrr_at_100
            value: 33.297
          - type: mrr_at_1000
            value: 33.361000000000004
          - type: mrr_at_20
            value: 32.845
          - type: mrr_at_3
            value: 29.498
          - type: mrr_at_5
            value: 31.375999999999998
          - type: ndcg_at_1
            value: 22.761
          - type: ndcg_at_10
            value: 33.036
          - type: ndcg_at_100
            value: 38.743
          - type: ndcg_at_1000
            value: 41.568
          - type: ndcg_at_20
            value: 34.838
          - type: ndcg_at_3
            value: 27.803
          - type: ndcg_at_5
            value: 30.781
          - type: precision_at_1
            value: 22.761
          - type: precision_at_10
            value: 6.132
          - type: precision_at_100
            value: 1.031
          - type: precision_at_1000
            value: 0.14200000000000002
          - type: precision_at_20
            value: 3.582
          - type: precision_at_3
            value: 13.474
          - type: precision_at_5
            value: 10.123999999999999
          - type: recall_at_1
            value: 17.939
          - type: recall_at_10
            value: 45.515
          - type: recall_at_100
            value: 70.56700000000001
          - type: recall_at_1000
            value: 90.306
          - type: recall_at_20
            value: 51.946999999999996
          - type: recall_at_3
            value: 31.459
          - type: recall_at_5
            value: 39.007
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 31.156
          - type: map_at_10
            value: 42.317
          - type: map_at_100
            value: 43.742
          - type: map_at_1000
            value: 43.852000000000004
          - type: map_at_20
            value: 43.147999999999996
          - type: map_at_3
            value: 38.981
          - type: map_at_5
            value: 40.827000000000005
          - type: mrr_at_1
            value: 38.401999999999994
          - type: mrr_at_10
            value: 48.141
          - type: mrr_at_100
            value: 48.991
          - type: mrr_at_1000
            value: 49.03
          - type: mrr_at_20
            value: 48.665000000000006
          - type: mrr_at_3
            value: 45.684999999999995
          - type: mrr_at_5
            value: 47.042
          - type: ndcg_at_1
            value: 38.401999999999994
          - type: ndcg_at_10
            value: 48.541000000000004
          - type: ndcg_at_100
            value: 54.063
          - type: ndcg_at_1000
            value: 56.005
          - type: ndcg_at_20
            value: 50.895999999999994
          - type: ndcg_at_3
            value: 43.352000000000004
          - type: ndcg_at_5
            value: 45.769
          - type: precision_at_1
            value: 38.401999999999994
          - type: precision_at_10
            value: 8.738999999999999
          - type: precision_at_100
            value: 1.335
          - type: precision_at_1000
            value: 0.16999999999999998
          - type: precision_at_20
            value: 5.164
          - type: precision_at_3
            value: 20.468
          - type: precision_at_5
            value: 14.437
          - type: recall_at_1
            value: 31.156
          - type: recall_at_10
            value: 61.172000000000004
          - type: recall_at_100
            value: 83.772
          - type: recall_at_1000
            value: 96.192
          - type: recall_at_20
            value: 69.223
          - type: recall_at_3
            value: 46.628
          - type: recall_at_5
            value: 53.032000000000004
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 26.741999999999997
          - type: map_at_10
            value: 36.937
          - type: map_at_100
            value: 38.452
          - type: map_at_1000
            value: 38.557
          - type: map_at_20
            value: 37.858999999999995
          - type: map_at_3
            value: 33.579
          - type: map_at_5
            value: 35.415
          - type: mrr_at_1
            value: 32.991
          - type: mrr_at_10
            value: 42.297000000000004
          - type: mrr_at_100
            value: 43.282
          - type: mrr_at_1000
            value: 43.332
          - type: mrr_at_20
            value: 42.95
          - type: mrr_at_3
            value: 39.707
          - type: mrr_at_5
            value: 41.162
          - type: ndcg_at_1
            value: 32.991
          - type: ndcg_at_10
            value: 43.004999999999995
          - type: ndcg_at_100
            value: 49.053000000000004
          - type: ndcg_at_1000
            value: 51.166999999999994
          - type: ndcg_at_20
            value: 45.785
          - type: ndcg_at_3
            value: 37.589
          - type: ndcg_at_5
            value: 40.007999999999996
          - type: precision_at_1
            value: 32.991
          - type: precision_at_10
            value: 8.025
          - type: precision_at_100
            value: 1.268
          - type: precision_at_1000
            value: 0.163
          - type: precision_at_20
            value: 4.846
          - type: precision_at_3
            value: 17.922
          - type: precision_at_5
            value: 13.059000000000001
          - type: recall_at_1
            value: 26.741999999999997
          - type: recall_at_10
            value: 55.635999999999996
          - type: recall_at_100
            value: 80.798
          - type: recall_at_1000
            value: 94.918
          - type: recall_at_20
            value: 65.577
          - type: recall_at_3
            value: 40.658
          - type: recall_at_5
            value: 46.812
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 27.274583333333336
          - type: map_at_10
            value: 37.04091666666666
          - type: map_at_100
            value: 38.27966666666667
          - type: map_at_1000
            value: 38.39383333333334
          - type: map_at_20
            value: 37.721500000000006
          - type: map_at_3
            value: 33.937999999999995
          - type: map_at_5
            value: 35.67974999999999
          - type: mrr_at_1
            value: 32.40525
          - type: mrr_at_10
            value: 41.43925000000001
          - type: mrr_at_100
            value: 42.271
          - type: mrr_at_1000
            value: 42.32416666666667
          - type: mrr_at_20
            value: 41.92733333333334
          - type: mrr_at_3
            value: 38.84941666666666
          - type: mrr_at_5
            value: 40.379583333333336
          - type: ndcg_at_1
            value: 32.40525
          - type: ndcg_at_10
            value: 42.73808333333334
          - type: ndcg_at_100
            value: 47.88941666666667
          - type: ndcg_at_1000
            value: 50.05008333333334
          - type: ndcg_at_20
            value: 44.74183333333334
          - type: ndcg_at_3
            value: 37.51908333333334
          - type: ndcg_at_5
            value: 40.01883333333333
          - type: precision_at_1
            value: 32.40525
          - type: precision_at_10
            value: 7.5361666666666665
          - type: precision_at_100
            value: 1.1934166666666666
          - type: precision_at_1000
            value: 0.1575
          - type: precision_at_20
            value: 4.429166666666667
          - type: precision_at_3
            value: 17.24941666666667
          - type: precision_at_5
            value: 12.362333333333336
          - type: recall_at_1
            value: 27.274583333333336
          - type: recall_at_10
            value: 55.21358333333334
          - type: recall_at_100
            value: 77.60366666666667
          - type: recall_at_1000
            value: 92.43691666666666
          - type: recall_at_20
            value: 62.474583333333335
          - type: recall_at_3
            value: 40.79375
          - type: recall_at_5
            value: 47.15158333333334
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 27.389999999999997
          - type: map_at_10
            value: 34.107
          - type: map_at_100
            value: 35.022999999999996
          - type: map_at_1000
            value: 35.13
          - type: map_at_20
            value: 34.605999999999995
          - type: map_at_3
            value: 32.021
          - type: map_at_5
            value: 32.948
          - type: mrr_at_1
            value: 30.982
          - type: mrr_at_10
            value: 37.345
          - type: mrr_at_100
            value: 38.096999999999994
          - type: mrr_at_1000
            value: 38.179
          - type: mrr_at_20
            value: 37.769000000000005
          - type: mrr_at_3
            value: 35.481
          - type: mrr_at_5
            value: 36.293
          - type: ndcg_at_1
            value: 30.982
          - type: ndcg_at_10
            value: 38.223
          - type: ndcg_at_100
            value: 42.686
          - type: ndcg_at_1000
            value: 45.352
          - type: ndcg_at_20
            value: 39.889
          - type: ndcg_at_3
            value: 34.259
          - type: ndcg_at_5
            value: 35.664
          - type: precision_at_1
            value: 30.982
          - type: precision_at_10
            value: 5.7669999999999995
          - type: precision_at_100
            value: 0.877
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_20
            value: 3.3360000000000003
          - type: precision_at_3
            value: 14.264
          - type: precision_at_5
            value: 9.54
          - type: recall_at_1
            value: 27.389999999999997
          - type: recall_at_10
            value: 48.009
          - type: recall_at_100
            value: 68.244
          - type: recall_at_1000
            value: 87.943
          - type: recall_at_20
            value: 54.064
          - type: recall_at_3
            value: 36.813
          - type: recall_at_5
            value: 40.321
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 18.249000000000002
          - type: map_at_10
            value: 25.907000000000004
          - type: map_at_100
            value: 27.105
          - type: map_at_1000
            value: 27.233
          - type: map_at_20
            value: 26.541999999999998
          - type: map_at_3
            value: 23.376
          - type: map_at_5
            value: 24.673000000000002
          - type: mrr_at_1
            value: 21.989
          - type: mrr_at_10
            value: 29.846
          - type: mrr_at_100
            value: 30.808999999999997
          - type: mrr_at_1000
            value: 30.885
          - type: mrr_at_20
            value: 30.384
          - type: mrr_at_3
            value: 27.46
          - type: mrr_at_5
            value: 28.758
          - type: ndcg_at_1
            value: 21.989
          - type: ndcg_at_10
            value: 30.874000000000002
          - type: ndcg_at_100
            value: 36.504999999999995
          - type: ndcg_at_1000
            value: 39.314
          - type: ndcg_at_20
            value: 32.952999999999996
          - type: ndcg_at_3
            value: 26.249
          - type: ndcg_at_5
            value: 28.229
          - type: precision_at_1
            value: 21.989
          - type: precision_at_10
            value: 5.705
          - type: precision_at_100
            value: 0.9990000000000001
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_20
            value: 3.4459999999999997
          - type: precision_at_3
            value: 12.377
          - type: precision_at_5
            value: 8.961
          - type: recall_at_1
            value: 18.249000000000002
          - type: recall_at_10
            value: 41.824
          - type: recall_at_100
            value: 67.071
          - type: recall_at_1000
            value: 86.863
          - type: recall_at_20
            value: 49.573
          - type: recall_at_3
            value: 28.92
          - type: recall_at_5
            value: 34.003
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 26.602999999999998
          - type: map_at_10
            value: 36.818
          - type: map_at_100
            value: 37.894
          - type: map_at_1000
            value: 37.991
          - type: map_at_20
            value: 37.389
          - type: map_at_3
            value: 33.615
          - type: map_at_5
            value: 35.432
          - type: mrr_at_1
            value: 31.53
          - type: mrr_at_10
            value: 41.144
          - type: mrr_at_100
            value: 41.937999999999995
          - type: mrr_at_1000
            value: 41.993
          - type: mrr_at_20
            value: 41.585
          - type: mrr_at_3
            value: 38.385999999999996
          - type: mrr_at_5
            value: 39.995000000000005
          - type: ndcg_at_1
            value: 31.53
          - type: ndcg_at_10
            value: 42.792
          - type: ndcg_at_100
            value: 47.749
          - type: ndcg_at_1000
            value: 49.946
          - type: ndcg_at_20
            value: 44.59
          - type: ndcg_at_3
            value: 37.025000000000006
          - type: ndcg_at_5
            value: 39.811
          - type: precision_at_1
            value: 31.53
          - type: precision_at_10
            value: 7.2669999999999995
          - type: precision_at_100
            value: 1.109
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_20
            value: 4.184
          - type: precision_at_3
            value: 16.791
          - type: precision_at_5
            value: 12.09
          - type: recall_at_1
            value: 26.602999999999998
          - type: recall_at_10
            value: 56.730999999999995
          - type: recall_at_100
            value: 78.119
          - type: recall_at_1000
            value: 93.458
          - type: recall_at_20
            value: 63.00599999999999
          - type: recall_at_3
            value: 41.306
          - type: recall_at_5
            value: 48.004999999999995
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 23.988
          - type: map_at_10
            value: 33.650999999999996
          - type: map_at_100
            value: 35.263
          - type: map_at_1000
            value: 35.481
          - type: map_at_20
            value: 34.463
          - type: map_at_3
            value: 30.330000000000002
          - type: map_at_5
            value: 32.056000000000004
          - type: mrr_at_1
            value: 29.644
          - type: mrr_at_10
            value: 38.987
          - type: mrr_at_100
            value: 39.973
          - type: mrr_at_1000
            value: 40.013
          - type: mrr_at_20
            value: 39.553
          - type: mrr_at_3
            value: 36.001
          - type: mrr_at_5
            value: 37.869
          - type: ndcg_at_1
            value: 29.644
          - type: ndcg_at_10
            value: 40.156
          - type: ndcg_at_100
            value: 46.244
          - type: ndcg_at_1000
            value: 48.483
          - type: ndcg_at_20
            value: 42.311
          - type: ndcg_at_3
            value: 34.492
          - type: ndcg_at_5
            value: 37.118
          - type: precision_at_1
            value: 29.644
          - type: precision_at_10
            value: 7.925
          - type: precision_at_100
            value: 1.5890000000000002
          - type: precision_at_1000
            value: 0.245
          - type: precision_at_20
            value: 4.97
          - type: precision_at_3
            value: 16.469
          - type: precision_at_5
            value: 12.174
          - type: recall_at_1
            value: 23.988
          - type: recall_at_10
            value: 52.844
          - type: recall_at_100
            value: 80.143
          - type: recall_at_1000
            value: 93.884
          - type: recall_at_20
            value: 61.050000000000004
          - type: recall_at_3
            value: 36.720000000000006
          - type: recall_at_5
            value: 43.614999999999995
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 21.947
          - type: map_at_10
            value: 29.902
          - type: map_at_100
            value: 30.916
          - type: map_at_1000
            value: 31.016
          - type: map_at_20
            value: 30.497999999999998
          - type: map_at_3
            value: 27.044
          - type: map_at_5
            value: 28.786
          - type: mrr_at_1
            value: 23.845
          - type: mrr_at_10
            value: 32.073
          - type: mrr_at_100
            value: 32.940999999999995
          - type: mrr_at_1000
            value: 33.015
          - type: mrr_at_20
            value: 32.603
          - type: mrr_at_3
            value: 29.205
          - type: mrr_at_5
            value: 31.044
          - type: ndcg_at_1
            value: 23.845
          - type: ndcg_at_10
            value: 34.79
          - type: ndcg_at_100
            value: 39.573
          - type: ndcg_at_1000
            value: 42.163000000000004
          - type: ndcg_at_20
            value: 36.778
          - type: ndcg_at_3
            value: 29.326
          - type: ndcg_at_5
            value: 32.289
          - type: precision_at_1
            value: 23.845
          - type: precision_at_10
            value: 5.527
          - type: precision_at_100
            value: 0.847
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_20
            value: 3.2439999999999998
          - type: precision_at_3
            value: 12.384
          - type: precision_at_5
            value: 9.205
          - type: recall_at_1
            value: 21.947
          - type: recall_at_10
            value: 47.713
          - type: recall_at_100
            value: 69.299
          - type: recall_at_1000
            value: 88.593
          - type: recall_at_20
            value: 55.032000000000004
          - type: recall_at_3
            value: 33.518
          - type: recall_at_5
            value: 40.427
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 13.655999999999999
          - type: map_at_10
            value: 23.954
          - type: map_at_100
            value: 26.07
          - type: map_at_1000
            value: 26.266000000000002
          - type: map_at_20
            value: 25.113000000000003
          - type: map_at_3
            value: 19.85
          - type: map_at_5
            value: 21.792
          - type: mrr_at_1
            value: 31.075000000000003
          - type: mrr_at_10
            value: 43.480000000000004
          - type: mrr_at_100
            value: 44.39
          - type: mrr_at_1000
            value: 44.42
          - type: mrr_at_20
            value: 44.06
          - type: mrr_at_3
            value: 40.38
          - type: mrr_at_5
            value: 42.138999999999996
          - type: ndcg_at_1
            value: 31.075000000000003
          - type: ndcg_at_10
            value: 33.129999999999995
          - type: ndcg_at_100
            value: 40.794000000000004
          - type: ndcg_at_1000
            value: 44.062
          - type: ndcg_at_20
            value: 36.223
          - type: ndcg_at_3
            value: 27.224999999999998
          - type: ndcg_at_5
            value: 28.969
          - type: precision_at_1
            value: 31.075000000000003
          - type: precision_at_10
            value: 10.476
          - type: precision_at_100
            value: 1.864
          - type: precision_at_1000
            value: 0.247
          - type: precision_at_20
            value: 6.593
          - type: precision_at_3
            value: 20.456
          - type: precision_at_5
            value: 15.440000000000001
          - type: recall_at_1
            value: 13.655999999999999
          - type: recall_at_10
            value: 39.678000000000004
          - type: recall_at_100
            value: 65.523
          - type: recall_at_1000
            value: 83.59100000000001
          - type: recall_at_20
            value: 48.27
          - type: recall_at_3
            value: 24.863
          - type: recall_at_5
            value: 30.453999999999997
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 9.139
          - type: map_at_10
            value: 20.366999999999997
          - type: map_at_100
            value: 29.755
          - type: map_at_1000
            value: 31.563999999999997
          - type: map_at_20
            value: 24.021
          - type: map_at_3
            value: 14.395
          - type: map_at_5
            value: 16.853
          - type: mrr_at_1
            value: 69
          - type: mrr_at_10
            value: 76.778
          - type: mrr_at_100
            value: 77.116
          - type: mrr_at_1000
            value: 77.12299999999999
          - type: mrr_at_20
            value: 77.046
          - type: mrr_at_3
            value: 75.208
          - type: mrr_at_5
            value: 76.146
          - type: ndcg_at_1
            value: 57.125
          - type: ndcg_at_10
            value: 42.84
          - type: ndcg_at_100
            value: 48.686
          - type: ndcg_at_1000
            value: 56.294
          - type: ndcg_at_20
            value: 42.717
          - type: ndcg_at_3
            value: 46.842
          - type: ndcg_at_5
            value: 44.248
          - type: precision_at_1
            value: 69
          - type: precision_at_10
            value: 34.625
          - type: precision_at_100
            value: 11.468
          - type: precision_at_1000
            value: 2.17
          - type: precision_at_20
            value: 26.562
          - type: precision_at_3
            value: 50.917
          - type: precision_at_5
            value: 43.35
          - type: recall_at_1
            value: 9.139
          - type: recall_at_10
            value: 26.247999999999998
          - type: recall_at_100
            value: 56.647000000000006
          - type: recall_at_1000
            value: 80.784
          - type: recall_at_20
            value: 35.010999999999996
          - type: recall_at_3
            value: 15.57
          - type: recall_at_5
            value: 19.198
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 55.93
          - type: f1
            value: 49.35314406745291
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 73.198
          - type: map_at_10
            value: 81.736
          - type: map_at_100
            value: 82.02000000000001
          - type: map_at_1000
            value: 82.03399999999999
          - type: map_at_20
            value: 81.937
          - type: map_at_3
            value: 80.692
          - type: map_at_5
            value: 81.369
          - type: mrr_at_1
            value: 78.803
          - type: mrr_at_10
            value: 86.144
          - type: mrr_at_100
            value: 86.263
          - type: mrr_at_1000
            value: 86.26599999999999
          - type: mrr_at_20
            value: 86.235
          - type: mrr_at_3
            value: 85.464
          - type: mrr_at_5
            value: 85.95
          - type: ndcg_at_1
            value: 78.803
          - type: ndcg_at_10
            value: 85.442
          - type: ndcg_at_100
            value: 86.422
          - type: ndcg_at_1000
            value: 86.68900000000001
          - type: ndcg_at_20
            value: 85.996
          - type: ndcg_at_3
            value: 83.839
          - type: ndcg_at_5
            value: 84.768
          - type: precision_at_1
            value: 78.803
          - type: precision_at_10
            value: 10.261000000000001
          - type: precision_at_100
            value: 1.0959999999999999
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_20
            value: 5.286
          - type: precision_at_3
            value: 32.083
          - type: precision_at_5
            value: 19.898
          - type: recall_at_1
            value: 73.198
          - type: recall_at_10
            value: 92.42099999999999
          - type: recall_at_100
            value: 96.28
          - type: recall_at_1000
            value: 97.995
          - type: recall_at_20
            value: 94.36
          - type: recall_at_3
            value: 88.042
          - type: recall_at_5
            value: 90.429
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 21.583
          - type: map_at_10
            value: 36.503
          - type: map_at_100
            value: 38.529
          - type: map_at_1000
            value: 38.701
          - type: map_at_20
            value: 37.69
          - type: map_at_3
            value: 31.807000000000002
          - type: map_at_5
            value: 34.424
          - type: mrr_at_1
            value: 43.827
          - type: mrr_at_10
            value: 53.528
          - type: mrr_at_100
            value: 54.291
          - type: mrr_at_1000
            value: 54.32599999999999
          - type: mrr_at_20
            value: 54.064
          - type: mrr_at_3
            value: 51.25999999999999
          - type: mrr_at_5
            value: 52.641000000000005
          - type: ndcg_at_1
            value: 43.827
          - type: ndcg_at_10
            value: 44.931
          - type: ndcg_at_100
            value: 51.778999999999996
          - type: ndcg_at_1000
            value: 54.532000000000004
          - type: ndcg_at_20
            value: 47.899
          - type: ndcg_at_3
            value: 41.062
          - type: ndcg_at_5
            value: 42.33
          - type: precision_at_1
            value: 43.827
          - type: precision_at_10
            value: 12.608
          - type: precision_at_100
            value: 1.974
          - type: precision_at_1000
            value: 0.247
          - type: precision_at_20
            value: 7.585
          - type: precision_at_3
            value: 27.778000000000002
          - type: precision_at_5
            value: 20.308999999999997
          - type: recall_at_1
            value: 21.583
          - type: recall_at_10
            value: 52.332
          - type: recall_at_100
            value: 77.256
          - type: recall_at_1000
            value: 93.613
          - type: recall_at_20
            value: 61.413
          - type: recall_at_3
            value: 37.477
          - type: recall_at_5
            value: 44.184
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 39.845000000000006
          - type: map_at_10
            value: 64.331
          - type: map_at_100
            value: 65.202
          - type: map_at_1000
            value: 65.261
          - type: map_at_20
            value: 64.833
          - type: map_at_3
            value: 60.663
          - type: map_at_5
            value: 62.94
          - type: mrr_at_1
            value: 79.689
          - type: mrr_at_10
            value: 85.299
          - type: mrr_at_100
            value: 85.461
          - type: mrr_at_1000
            value: 85.466
          - type: mrr_at_20
            value: 85.39099999999999
          - type: mrr_at_3
            value: 84.396
          - type: mrr_at_5
            value: 84.974
          - type: ndcg_at_1
            value: 79.689
          - type: ndcg_at_10
            value: 72.49
          - type: ndcg_at_100
            value: 75.485
          - type: ndcg_at_1000
            value: 76.563
          - type: ndcg_at_20
            value: 73.707
          - type: ndcg_at_3
            value: 67.381
          - type: ndcg_at_5
            value: 70.207
          - type: precision_at_1
            value: 79.689
          - type: precision_at_10
            value: 15.267
          - type: precision_at_100
            value: 1.7610000000000001
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_20
            value: 8.024000000000001
          - type: precision_at_3
            value: 43.363
          - type: precision_at_5
            value: 28.248
          - type: recall_at_1
            value: 39.845000000000006
          - type: recall_at_10
            value: 76.334
          - type: recall_at_100
            value: 88.042
          - type: recall_at_1000
            value: 95.09100000000001
          - type: recall_at_20
            value: 80.243
          - type: recall_at_3
            value: 65.044
          - type: recall_at_5
            value: 70.621
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 93.57079999999999
          - type: ap
            value: 90.50045924786099
          - type: f1
            value: 93.56673497845476
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 22.212
          - type: map_at_10
            value: 34.528
          - type: map_at_100
            value: 35.69
          - type: map_at_1000
            value: 35.74
          - type: map_at_20
            value: 35.251
          - type: map_at_3
            value: 30.628
          - type: map_at_5
            value: 32.903999999999996
          - type: mrr_at_1
            value: 22.794
          - type: mrr_at_10
            value: 35.160000000000004
          - type: mrr_at_100
            value: 36.251
          - type: mrr_at_1000
            value: 36.295
          - type: mrr_at_20
            value: 35.845
          - type: mrr_at_3
            value: 31.328
          - type: mrr_at_5
            value: 33.574
          - type: ndcg_at_1
            value: 22.779
          - type: ndcg_at_10
            value: 41.461
          - type: ndcg_at_100
            value: 47.049
          - type: ndcg_at_1000
            value: 48.254000000000005
          - type: ndcg_at_20
            value: 44.031
          - type: ndcg_at_3
            value: 33.561
          - type: ndcg_at_5
            value: 37.62
          - type: precision_at_1
            value: 22.779
          - type: precision_at_10
            value: 6.552
          - type: precision_at_100
            value: 0.936
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_20
            value: 3.8120000000000003
          - type: precision_at_3
            value: 14.274000000000001
          - type: precision_at_5
            value: 10.622
          - type: recall_at_1
            value: 22.212
          - type: recall_at_10
            value: 62.732
          - type: recall_at_100
            value: 88.567
          - type: recall_at_1000
            value: 97.727
          - type: recall_at_20
            value: 72.733
          - type: recall_at_3
            value: 41.367
          - type: recall_at_5
            value: 51.105999999999995
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 94.24988600091199
          - type: f1
            value: 94.06064583085202
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 74.86052409129333
          - type: f1
            value: 72.24661442078647
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 77.09139426284189
          - type: f1
            value: 76.3725044443502
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 79.79956154087064
          - type: f1
            value: 78.41859658401724
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 32.785944783076374
          - type: f1
            value: 31.182237278594922
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 16.654611211573236
          - type: f1
            value: 12.088413093236642
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 67.51481988144094
          - type: f1
            value: 49.561420234732125
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 42.36122851507467
          - type: f1
            value: 25.445030887504398
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 44.73315543695797
          - type: f1
            value: 28.42075153540265
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 38.96022549326651
          - type: f1
            value: 25.926979537146106
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 13.578343492291141
          - type: f1
            value: 8.929295550931657
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 5.396021699819168
          - type: f1
            value: 1.8587148785378742
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.22259583053128
          - type: f1
            value: 34.63013680947778
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 3.194351042367182
          - type: f1
            value: 1.2612010214639442
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 14.26361802286483
          - type: f1
            value: 13.70260406613821
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.21923335574983
          - type: f1
            value: 36.33553913878251
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 10.756556825823807
          - type: f1
            value: 9.676431920229374
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 32.49831876260928
          - type: f1
            value: 30.818895782691868
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.995292535305985
          - type: f1
            value: 37.68768183180129
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 42.780766644250164
          - type: f1
            value: 37.82194830667135
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 33.490248823133825
          - type: f1
            value: 29.71809045584527
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 73.8836583725622
          - type: f1
            value: 72.16381047416814
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 44.45191661062542
          - type: f1
            value: 43.46583297093683
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 26.738399462004036
          - type: f1
            value: 24.11896530001951
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 38.09683927370545
          - type: f1
            value: 35.34443269387154
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 46.89307330195024
          - type: f1
            value: 43.47164092514292
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 25.198386012104912
          - type: f1
            value: 22.446286736401916
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 13.940820443846672
          - type: f1
            value: 13.257747189396213
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 34.710827168796236
          - type: f1
            value: 32.036974696095996
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 6.711499663752522
          - type: f1
            value: 5.439441019096591
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 38.56758574310693
          - type: f1
            value: 36.83183505458304
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 32.22595830531271
          - type: f1
            value: 30.10972675771159
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 45.79690652320107
          - type: f1
            value: 44.37143784350453
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 29.189643577673163
          - type: f1
            value: 25.43718135312703
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 34.21990585070612
          - type: f1
            value: 32.333592263041396
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 8.890383322125084
          - type: f1
            value: 7.294310113130201
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 4.616677874915938
          - type: f1
            value: 1.5028537477535886
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 3.170813718897109
          - type: f1
            value: 1.5771411815826382
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 15.026899798251513
          - type: f1
            value: 14.077395255366183
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.0995292535306
          - type: f1
            value: 35.0877269083235
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 2.9959650302622727
          - type: f1
            value: 0.8064424547273695
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 23.301950235373234
          - type: f1
            value: 22.477376205075853
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.13315400134499
          - type: f1
            value: 32.99623898888715
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 3.813046402151983
          - type: f1
            value: 1.1769597223141248
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.66711499663752
          - type: f1
            value: 35.921474753569214
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 41.079354404841965
          - type: f1
            value: 37.57739961852201
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 38.211163416274374
          - type: f1
            value: 34.89419275422068
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 45.19838601210491
          - type: f1
            value: 42.71660225307043
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.48554135843981
          - type: f1
            value: 37.47402102847154
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 31.819098856758576
          - type: f1
            value: 30.120158288509725
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 35.44720914593141
          - type: f1
            value: 33.74530063536304
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.89307330195024
          - type: f1
            value: 34.46971619696105
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 38.83322125084062
          - type: f1
            value: 36.050770344888264
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.535305985205106
          - type: f1
            value: 35.21395700670493
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 7.905178211163418
          - type: f1
            value: 6.163513326325246
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 2.8480161398789514
          - type: f1
            value: 1.0163931337986962
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 10.501008742434433
          - type: f1
            value: 6.858549418430471
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.46536650975118
          - type: f1
            value: 34.96292597328575
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.50168123739071
          - type: f1
            value: 35.031097269820464
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 16.109616677874918
          - type: f1
            value: 15.884609726192519
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.11297915265636
          - type: f1
            value: 34.59918716321474
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 18.850033624747812
          - type: f1
            value: 15.09584388649328
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 17.219233355749832
          - type: f1
            value: 14.538046039008337
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 47.79757901815736
          - type: f1
            value: 45.078250421193324
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 7.078009414929388
          - type: f1
            value: 4.0122456300041645
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 22.831203765971754
          - type: f1
            value: 20.131610050816555
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.952925353059854
          - type: f1
            value: 42.6865575762921
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 16.593813046402154
          - type: f1
            value: 14.087144503044291
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 37.91862811028917
          - type: f1
            value: 34.968402727911915
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 51.923335574983184
          - type: f1
            value: 49.357147840776335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 58.73570948217889
          - type: f1
            value: 54.92084137819753
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.995965030262276
          - type: f1
            value: 38.47512542753069
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 77.42098184263618
          - type: f1
            value: 77.03413816048877
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 54.46536650975118
          - type: f1
            value: 53.08520810835907
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 30.578345662407525
          - type: f1
            value: 28.822998245702635
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.567585743106925
          - type: f1
            value: 39.79216651714347
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 56.98722259583053
          - type: f1
            value: 55.31168113501439
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 28.076664425016812
          - type: f1
            value: 24.927348965627573
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 18.096839273705445
          - type: f1
            value: 17.386603595777103
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.73839946200403
          - type: f1
            value: 38.65545902563735
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 11.536650975117688
          - type: f1
            value: 10.898336694524854
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.9502353732347
          - type: f1
            value: 44.332561323528644
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.777404169468724
          - type: f1
            value: 39.378117766055354
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 54.6469401479489
          - type: f1
            value: 52.512025274851794
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 35.90114324142569
          - type: f1
            value: 34.90331274712605
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.51176866173504
          - type: f1
            value: 39.417541845685676
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 13.799596503026226
          - type: f1
            value: 11.587556164962251
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 9.44855413584398
          - type: f1
            value: 4.30711077076907
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 8.157363819771351
          - type: f1
            value: 5.5588908736809515
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 19.909213180901144
          - type: f1
            value: 18.964761241087984
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.47747141896436
          - type: f1
            value: 38.17159556642586
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 6.701412239408204
          - type: f1
            value: 3.621974155647488
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 28.55413584398117
          - type: f1
            value: 26.582548923662753
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.617350369872234
          - type: f1
            value: 41.35397419267425
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 9.976462676529927
          - type: f1
            value: 5.900764382768462
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.894418291862806
          - type: f1
            value: 47.70929403771086
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 51.761936785474106
          - type: f1
            value: 48.42797973062516
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.21385339609952
          - type: f1
            value: 43.7081546200347
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 55.59852051109617
          - type: f1
            value: 54.19610878409633
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.54135843981169
          - type: f1
            value: 47.79393938467311
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 37.73032952252858
          - type: f1
            value: 35.96450149708041
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.67114996637525
          - type: f1
            value: 40.28283538885605
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 47.38063214525891
          - type: f1
            value: 44.93264016007152
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.28379287155347
          - type: f1
            value: 46.25486396570196
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.18291862811029
          - type: f1
            value: 41.17519157172804
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 12.599193006052452
          - type: f1
            value: 11.129236666238377
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 7.017484868863484
          - type: f1
            value: 3.9665415549749077
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 19.788164088769335
          - type: f1
            value: 15.783384761347582
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.35978480161398
          - type: f1
            value: 47.30586047800275
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.484196368527236
          - type: f1
            value: 44.65101184252231
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 23.681909885675857
          - type: f1
            value: 22.247817138937524
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.63080026899798
          - type: f1
            value: 39.546896741744
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 30.141223940820446
          - type: f1
            value: 28.177838960078123
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 27.515131136516473
          - type: f1
            value: 26.514325837594654
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 33.70592767911301
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 31.80943770643908
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.66434973425713
          - type: mrr
            value: 33.92240574935323
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 6.561999999999999
          - type: map_at_10
            value: 14.854000000000001
          - type: map_at_100
            value: 19.187
          - type: map_at_1000
            value: 20.812
          - type: map_at_20
            value: 16.744
          - type: map_at_3
            value: 10.804
          - type: map_at_5
            value: 12.555
          - type: mrr_at_1
            value: 48.916
          - type: mrr_at_10
            value: 57.644
          - type: mrr_at_100
            value: 58.17
          - type: mrr_at_1000
            value: 58.206
          - type: mrr_at_20
            value: 57.969
          - type: mrr_at_3
            value: 55.36600000000001
          - type: mrr_at_5
            value: 56.729
          - type: ndcg_at_1
            value: 46.594
          - type: ndcg_at_10
            value: 37.897999999999996
          - type: ndcg_at_100
            value: 35.711
          - type: ndcg_at_1000
            value: 44.65
          - type: ndcg_at_20
            value: 35.989
          - type: ndcg_at_3
            value: 42.869
          - type: ndcg_at_5
            value: 40.373
          - type: precision_at_1
            value: 48.297000000000004
          - type: precision_at_10
            value: 28.297
          - type: precision_at_100
            value: 9.099
          - type: precision_at_1000
            value: 2.229
          - type: precision_at_20
            value: 21.455
          - type: precision_at_3
            value: 40.248
          - type: precision_at_5
            value: 34.675
          - type: recall_at_1
            value: 6.561999999999999
          - type: recall_at_10
            value: 19.205
          - type: recall_at_100
            value: 36.742999999999995
          - type: recall_at_1000
            value: 69.119
          - type: recall_at_20
            value: 23.787
          - type: recall_at_3
            value: 11.918
          - type: recall_at_5
            value: 14.860000000000001
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 30.306
          - type: map_at_10
            value: 46.916999999999994
          - type: map_at_100
            value: 47.899
          - type: map_at_1000
            value: 47.925000000000004
          - type: map_at_20
            value: 47.583
          - type: map_at_3
            value: 42.235
          - type: map_at_5
            value: 45.118
          - type: mrr_at_1
            value: 34.327999999999996
          - type: mrr_at_10
            value: 49.248999999999995
          - type: mrr_at_100
            value: 49.96
          - type: mrr_at_1000
            value: 49.977
          - type: mrr_at_20
            value: 49.738
          - type: mrr_at_3
            value: 45.403999999999996
          - type: mrr_at_5
            value: 47.786
          - type: ndcg_at_1
            value: 34.327999999999996
          - type: ndcg_at_10
            value: 55.123999999999995
          - type: ndcg_at_100
            value: 59.136
          - type: ndcg_at_1000
            value: 59.71300000000001
          - type: ndcg_at_20
            value: 57.232000000000006
          - type: ndcg_at_3
            value: 46.48
          - type: ndcg_at_5
            value: 51.237
          - type: precision_at_1
            value: 34.327999999999996
          - type: precision_at_10
            value: 9.261
          - type: precision_at_100
            value: 1.1520000000000001
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_20
            value: 5.148
          - type: precision_at_3
            value: 21.523999999999997
          - type: precision_at_5
            value: 15.659999999999998
          - type: recall_at_1
            value: 30.306
          - type: recall_at_10
            value: 77.65100000000001
          - type: recall_at_100
            value: 94.841
          - type: recall_at_1000
            value: 99.119
          - type: recall_at_20
            value: 85.37599999999999
          - type: recall_at_3
            value: 55.562
          - type: recall_at_5
            value: 66.5
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
        metrics:
          - type: map_at_1
            value: 71.516
          - type: map_at_10
            value: 85.48400000000001
          - type: map_at_100
            value: 86.11
          - type: map_at_1000
            value: 86.124
          - type: map_at_20
            value: 85.895
          - type: map_at_3
            value: 82.606
          - type: map_at_5
            value: 84.395
          - type: mrr_at_1
            value: 82.38
          - type: mrr_at_10
            value: 88.31099999999999
          - type: mrr_at_100
            value: 88.407
          - type: mrr_at_1000
            value: 88.407
          - type: mrr_at_20
            value: 88.385
          - type: mrr_at_3
            value: 87.42699999999999
          - type: mrr_at_5
            value: 88.034
          - type: ndcg_at_1
            value: 82.39999999999999
          - type: ndcg_at_10
            value: 89.07300000000001
          - type: ndcg_at_100
            value: 90.23400000000001
          - type: ndcg_at_1000
            value: 90.304
          - type: ndcg_at_20
            value: 89.714
          - type: ndcg_at_3
            value: 86.42699999999999
          - type: ndcg_at_5
            value: 87.856
          - type: precision_at_1
            value: 82.39999999999999
          - type: precision_at_10
            value: 13.499
          - type: precision_at_100
            value: 1.536
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_20
            value: 7.155
          - type: precision_at_3
            value: 37.846999999999994
          - type: precision_at_5
            value: 24.778
          - type: recall_at_1
            value: 71.516
          - type: recall_at_10
            value: 95.831
          - type: recall_at_100
            value: 99.714
          - type: recall_at_1000
            value: 99.979
          - type: recall_at_20
            value: 97.87599999999999
          - type: recall_at_3
            value: 88.08
          - type: recall_at_5
            value: 92.285
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 61.3760407207699
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 65.28621066626943
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
        metrics:
          - type: map_at_1
            value: 5.163
          - type: map_at_10
            value: 14.377
          - type: map_at_100
            value: 17.177
          - type: map_at_1000
            value: 17.588
          - type: map_at_20
            value: 15.827
          - type: map_at_3
            value: 9.879
          - type: map_at_5
            value: 12.133
          - type: mrr_at_1
            value: 25.5
          - type: mrr_at_10
            value: 38.435
          - type: mrr_at_100
            value: 39.573
          - type: mrr_at_1000
            value: 39.606
          - type: mrr_at_20
            value: 39.134
          - type: mrr_at_3
            value: 34.666999999999994
          - type: mrr_at_5
            value: 37.117
          - type: ndcg_at_1
            value: 25.5
          - type: ndcg_at_10
            value: 23.688000000000002
          - type: ndcg_at_100
            value: 33.849000000000004
          - type: ndcg_at_1000
            value: 39.879
          - type: ndcg_at_20
            value: 27.36
          - type: ndcg_at_3
            value: 22.009999999999998
          - type: ndcg_at_5
            value: 19.691
          - type: precision_at_1
            value: 25.5
          - type: precision_at_10
            value: 12.540000000000001
          - type: precision_at_100
            value: 2.721
          - type: precision_at_1000
            value: 0.415
          - type: precision_at_20
            value: 8.385
          - type: precision_at_3
            value: 21.099999999999998
          - type: precision_at_5
            value: 17.84
          - type: recall_at_1
            value: 5.163
          - type: recall_at_10
            value: 25.405
          - type: recall_at_100
            value: 55.213
          - type: recall_at_1000
            value: 84.243
          - type: recall_at_20
            value: 34.003
          - type: recall_at_3
            value: 12.837000000000002
          - type: recall_at_5
            value: 18.096999999999998
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 87.64406884822948
          - type: cos_sim_spearman
            value: 83.00239648251724
          - type: euclidean_pearson
            value: 85.03347205351844
          - type: euclidean_spearman
            value: 83.00240733538445
          - type: manhattan_pearson
            value: 85.0312758694447
          - type: manhattan_spearman
            value: 82.99430696077589
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.68832340658764
          - type: cos_sim_spearman
            value: 79.21679373212476
          - type: euclidean_pearson
            value: 85.17094885886415
          - type: euclidean_spearman
            value: 79.21421345946399
          - type: manhattan_pearson
            value: 85.17409319145995
          - type: manhattan_spearman
            value: 79.20992207976401
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 88.43733084958856
          - type: cos_sim_spearman
            value: 89.43082089321751
          - type: euclidean_pearson
            value: 88.63286785416938
          - type: euclidean_spearman
            value: 89.43082081372343
          - type: manhattan_pearson
            value: 88.62969346368385
          - type: manhattan_spearman
            value: 89.43131586189746
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 86.62185532014894
          - type: cos_sim_spearman
            value: 84.7923120886599
          - type: euclidean_pearson
            value: 85.99786490539253
          - type: euclidean_spearman
            value: 84.79231064318844
          - type: manhattan_pearson
            value: 85.97647892920392
          - type: manhattan_spearman
            value: 84.76865232132103
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.39303997282114
          - type: cos_sim_spearman
            value: 89.54273264876765
          - type: euclidean_pearson
            value: 88.8848627924181
          - type: euclidean_spearman
            value: 89.54275013645078
          - type: manhattan_pearson
            value: 88.86926987108802
          - type: manhattan_spearman
            value: 89.53259197721715
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.21814352466886
          - type: cos_sim_spearman
            value: 86.68505223422434
          - type: euclidean_pearson
            value: 86.07422446469991
          - type: euclidean_spearman
            value: 86.68505161067375
          - type: manhattan_pearson
            value: 86.05114200797293
          - type: manhattan_spearman
            value: 86.6587670422703
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 39.17871768366095
          - type: cos_sim_spearman
            value: 39.78510424960567
          - type: euclidean_pearson
            value: 41.65680175653682
          - type: euclidean_spearman
            value: 39.78538944779548
          - type: manhattan_pearson
            value: 41.567603690394755
          - type: manhattan_spearman
            value: 39.71393388259443
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 49.26766904195114
          - type: cos_sim_spearman
            value: 46.79722787057151
          - type: euclidean_pearson
            value: 51.2329334717446
          - type: euclidean_spearman
            value: 46.7920623095072
          - type: manhattan_pearson
            value: 51.26488560860826
          - type: manhattan_spearman
            value: 47.00400318665492
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 1.6821294132202447
          - type: cos_sim_spearman
            value: -0.7813676799492025
          - type: euclidean_pearson
            value: 1.9197388753860283
          - type: euclidean_spearman
            value: -0.7813676799492025
          - type: manhattan_pearson
            value: 2.209862430499871
          - type: manhattan_spearman
            value: -0.863014010062456
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 48.76382428941107
          - type: cos_sim_spearman
            value: 47.50280322999196
          - type: euclidean_pearson
            value: 48.73919143974209
          - type: euclidean_spearman
            value: 47.50280322999196
          - type: manhattan_pearson
            value: 48.76291223862666
          - type: manhattan_spearman
            value: 47.51318193687094
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 89.6579390263212
          - type: cos_sim_spearman
            value: 89.64423556388047
          - type: euclidean_pearson
            value: 90.1160733522703
          - type: euclidean_spearman
            value: 89.64423556388047
          - type: manhattan_pearson
            value: 90.1528407376387
          - type: manhattan_spearman
            value: 89.61290724496793
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 6.717092266815236
          - type: cos_sim_spearman
            value: 4.180543503488665
          - type: euclidean_pearson
            value: 7.120267092048099
          - type: euclidean_spearman
            value: 4.180543503488665
          - type: manhattan_pearson
            value: 6.396237465828514
          - type: manhattan_spearman
            value: 3.61244941411957
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 44.36476614938953
          - type: cos_sim_spearman
            value: 44.265723809500685
          - type: euclidean_pearson
            value: 44.61551298711104
          - type: euclidean_spearman
            value: 44.265723809500685
          - type: manhattan_pearson
            value: 44.54302374682193
          - type: manhattan_spearman
            value: 44.08642490624185
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 79.64871991975828
          - type: cos_sim_spearman
            value: 79.21979030014373
          - type: euclidean_pearson
            value: 81.8672798988218
          - type: euclidean_spearman
            value: 79.21950130108661
          - type: manhattan_pearson
            value: 82.02131606326583
          - type: manhattan_spearman
            value: 79.44848373553044
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 48.73898658957231
          - type: cos_sim_spearman
            value: 47.15192605817168
          - type: euclidean_pearson
            value: 49.11990573381456
          - type: euclidean_spearman
            value: 47.15192605817168
          - type: manhattan_pearson
            value: 48.5694400358235
          - type: manhattan_spearman
            value: 46.651326429708135
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 44.42168074232218
          - type: cos_sim_spearman
            value: 42.64799010889372
          - type: euclidean_pearson
            value: 44.41376048324183
          - type: euclidean_spearman
            value: 42.64799010889372
          - type: manhattan_pearson
            value: 44.724522621427546
          - type: manhattan_spearman
            value: 42.60912761758016
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 40.55050173163197
          - type: cos_sim_spearman
            value: 36.59720399843921
          - type: euclidean_pearson
            value: 41.49402389245919
          - type: euclidean_spearman
            value: 36.59720399843921
          - type: manhattan_pearson
            value: 41.877514420153666
          - type: manhattan_spearman
            value: 36.782790653297695
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 69.44405106094861
          - type: cos_sim_spearman
            value: 70.25621893108706
          - type: euclidean_pearson
            value: 71.15726637696066
          - type: euclidean_spearman
            value: 70.25621893108706
          - type: manhattan_pearson
            value: 71.28565265298322
          - type: manhattan_spearman
            value: 70.30317892414027
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 34.56638014500804
          - type: cos_sim_spearman
            value: 39.48672765878819
          - type: euclidean_pearson
            value: 31.61811391543846
          - type: euclidean_spearman
            value: 39.48672765878819
          - type: manhattan_pearson
            value: 31.839117286689977
          - type: manhattan_spearman
            value: 39.71519891403971
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 53.72389957326714
          - type: cos_sim_spearman
            value: 59.47018781803598
          - type: euclidean_pearson
            value: 57.02101112722141
          - type: euclidean_spearman
            value: 59.47018781803598
          - type: manhattan_pearson
            value: 57.16531255049132
          - type: manhattan_spearman
            value: 59.57320508684436
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 24.14602533311477
          - type: cos_sim_spearman
            value: 35.38039329704056
          - type: euclidean_pearson
            value: 13.540543553763765
          - type: euclidean_spearman
            value: 35.38039329704056
          - type: manhattan_pearson
            value: 13.566377379303256
          - type: manhattan_spearman
            value: 35.88351047224126
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 39.07697432450346
          - type: cos_sim_spearman
            value: 45.65479772235109
          - type: euclidean_pearson
            value: 41.68913259791294
          - type: euclidean_spearman
            value: 45.65479772235109
          - type: manhattan_pearson
            value: 41.58872552392231
          - type: manhattan_spearman
            value: 45.462070534023404
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 23.917322166825183
          - type: cos_sim_spearman
            value: 25.06042767518008
          - type: euclidean_pearson
            value: 24.29850435278771
          - type: euclidean_spearman
            value: 25.06042767518008
          - type: manhattan_pearson
            value: 24.461400062927154
          - type: manhattan_spearman
            value: 25.285239684773046
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 20.39987623162105
          - type: cos_sim_spearman
            value: 30.62427846964406
          - type: euclidean_pearson
            value: 20.817950942480323
          - type: euclidean_spearman
            value: 30.618700916425222
          - type: manhattan_pearson
            value: 20.756787430880788
          - type: manhattan_spearman
            value: 30.813116243628436
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 43.838363041373974
          - type: cos_sim_spearman
            value: 54.17598089882719
          - type: euclidean_pearson
            value: 47.51044033919419
          - type: euclidean_spearman
            value: 54.17598089882719
          - type: manhattan_pearson
            value: 47.54911083403354
          - type: manhattan_spearman
            value: 54.2562151204606
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 77.69372699157654
          - type: cos_sim_spearman
            value: 79.88201388457435
          - type: euclidean_pearson
            value: 78.81259581302578
          - type: euclidean_spearman
            value: 79.88201388457435
          - type: manhattan_pearson
            value: 78.85098508555477
          - type: manhattan_spearman
            value: 80.20154858554835
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 51.83713469138834
          - type: cos_sim_spearman
            value: 54.2205845288082
          - type: euclidean_pearson
            value: 54.14828396506985
          - type: euclidean_spearman
            value: 54.2205845288082
          - type: manhattan_pearson
            value: 54.10701855179347
          - type: manhattan_spearman
            value: 54.30261135461622
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 61.59147752554915
          - type: cos_sim_spearman
            value: 66.65350021824162
          - type: euclidean_pearson
            value: 62.577915098325434
          - type: euclidean_spearman
            value: 66.65350021824162
          - type: manhattan_pearson
            value: 62.22817675366819
          - type: manhattan_spearman
            value: 66.35054389546214
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 65.23775897743552
          - type: cos_sim_spearman
            value: 68.1509652709288
          - type: euclidean_pearson
            value: 66.17577980319408
          - type: euclidean_spearman
            value: 68.1509652709288
          - type: manhattan_pearson
            value: 66.40051933918704
          - type: manhattan_spearman
            value: 68.37138808382802
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 61.943863830043725
          - type: cos_sim_spearman
            value: 62.699440972016774
          - type: euclidean_pearson
            value: 62.810366501196
          - type: euclidean_spearman
            value: 62.699440972016774
          - type: manhattan_pearson
            value: 63.13065659868621
          - type: manhattan_spearman
            value: 63.314141373703215
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 48.1108866326284
          - type: cos_sim_spearman
            value: 49.25274096772371
          - type: euclidean_pearson
            value: 47.87203797435136
          - type: euclidean_spearman
            value: 49.25274096772371
          - type: manhattan_pearson
            value: 47.39927722979605
          - type: manhattan_spearman
            value: 48.76629586560382
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 58.58401639298775
          - type: cos_sim_spearman
            value: 64.37272828346495
          - type: euclidean_pearson
            value: 61.03680632288844
          - type: euclidean_spearman
            value: 64.37272828346495
          - type: manhattan_pearson
            value: 61.381331848220675
          - type: manhattan_spearman
            value: 65.01053960017909
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 44.374682063416735
          - type: cos_sim_spearman
            value: 48.907776246550185
          - type: euclidean_pearson
            value: 45.473260322201284
          - type: euclidean_spearman
            value: 48.907776246550185
          - type: manhattan_pearson
            value: 46.051779591771854
          - type: manhattan_spearman
            value: 49.69297213757249
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 31.55497030143048
          - type: cos_sim_spearman
            value: 33.042073055100396
          - type: euclidean_pearson
            value: 33.548707962408955
          - type: euclidean_spearman
            value: 33.042073055100396
          - type: manhattan_pearson
            value: 31.704989941561873
          - type: manhattan_spearman
            value: 31.56395608711827
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 51.253093232573036
          - type: cos_sim_spearman
            value: 39.440531887330785
          - type: euclidean_pearson
            value: 51.42758694144294
          - type: euclidean_spearman
            value: 39.440531887330785
          - type: manhattan_pearson
            value: 49.623915715149394
          - type: manhattan_spearman
            value: 39.440531887330785
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 87.61260941646887
          - type: cos_sim_spearman
            value: 88.96384726759047
          - type: euclidean_pearson
            value: 88.72268994912045
          - type: euclidean_spearman
            value: 88.96384726759047
          - type: manhattan_pearson
            value: 88.72080954591475
          - type: manhattan_spearman
            value: 88.92379960545995
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 87.64768404690723
          - type: mrr
            value: 96.25675341361615
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 61.194
          - type: map_at_10
            value: 70.62899999999999
          - type: map_at_100
            value: 71.119
          - type: map_at_1000
            value: 71.14200000000001
          - type: map_at_20
            value: 71.033
          - type: map_at_3
            value: 67.51899999999999
          - type: map_at_5
            value: 69.215
          - type: mrr_at_1
            value: 63.666999999999994
          - type: mrr_at_10
            value: 71.456
          - type: mrr_at_100
            value: 71.844
          - type: mrr_at_1000
            value: 71.866
          - type: mrr_at_20
            value: 71.769
          - type: mrr_at_3
            value: 69.167
          - type: mrr_at_5
            value: 70.39999999999999
          - type: ndcg_at_1
            value: 63.666999999999994
          - type: ndcg_at_10
            value: 75.14
          - type: ndcg_at_100
            value: 77.071
          - type: ndcg_at_1000
            value: 77.55199999999999
          - type: ndcg_at_20
            value: 76.491
          - type: ndcg_at_3
            value: 69.836
          - type: ndcg_at_5
            value: 72.263
          - type: precision_at_1
            value: 63.666999999999994
          - type: precision_at_10
            value: 10
          - type: precision_at_100
            value: 1.093
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_20
            value: 5.3
          - type: precision_at_3
            value: 27
          - type: precision_at_5
            value: 17.867
          - type: recall_at_1
            value: 61.194
          - type: recall_at_10
            value: 88.156
          - type: recall_at_100
            value: 96.5
          - type: recall_at_1000
            value: 100
          - type: recall_at_20
            value: 93.389
          - type: recall_at_3
            value: 73.839
          - type: recall_at_5
            value: 79.828
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.87425742574257
          - type: cos_sim_ap
            value: 96.97141655369937
          - type: cos_sim_f1
            value: 93.6910084451068
          - type: cos_sim_precision
            value: 93.0898321816387
          - type: cos_sim_recall
            value: 94.3
          - type: dot_accuracy
            value: 99.87425742574257
          - type: dot_ap
            value: 96.97141655369938
          - type: dot_f1
            value: 93.6910084451068
          - type: dot_precision
            value: 93.0898321816387
          - type: dot_recall
            value: 94.3
          - type: euclidean_accuracy
            value: 99.87425742574257
          - type: euclidean_ap
            value: 96.97141655369938
          - type: euclidean_f1
            value: 93.6910084451068
          - type: euclidean_precision
            value: 93.0898321816387
          - type: euclidean_recall
            value: 94.3
          - type: manhattan_accuracy
            value: 99.87425742574257
          - type: manhattan_ap
            value: 96.98252972861131
          - type: manhattan_f1
            value: 93.68473396320238
          - type: manhattan_precision
            value: 93.17507418397626
          - type: manhattan_recall
            value: 94.19999999999999
          - type: max_accuracy
            value: 99.87425742574257
          - type: max_ap
            value: 96.98252972861131
          - type: max_f1
            value: 93.6910084451068
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 66.5976926394361
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 36.3221929214798
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.28322662897131
          - type: mrr
            value: 56.223620129870135
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.176396304511282
          - type: cos_sim_spearman
            value: 32.11989671564906
          - type: dot_pearson
            value: 31.17639740597169
          - type: dot_spearman
            value: 32.145586989831564
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
        metrics:
          - type: map_at_1
            value: 0.186
          - type: map_at_10
            value: 1.659
          - type: map_at_100
            value: 9.224
          - type: map_at_1000
            value: 22.506999999999998
          - type: map_at_20
            value: 2.937
          - type: map_at_3
            value: 0.5539999999999999
          - type: map_at_5
            value: 0.8920000000000001
          - type: mrr_at_1
            value: 72
          - type: mrr_at_10
            value: 82.633
          - type: mrr_at_100
            value: 82.633
          - type: mrr_at_1000
            value: 82.633
          - type: mrr_at_20
            value: 82.633
          - type: mrr_at_3
            value: 80.333
          - type: mrr_at_5
            value: 82.633
          - type: ndcg_at_1
            value: 69
          - type: ndcg_at_10
            value: 67.327
          - type: ndcg_at_100
            value: 51.626000000000005
          - type: ndcg_at_1000
            value: 47.396
          - type: ndcg_at_20
            value: 63.665000000000006
          - type: ndcg_at_3
            value: 68.95
          - type: ndcg_at_5
            value: 69.241
          - type: precision_at_1
            value: 72
          - type: precision_at_10
            value: 71.6
          - type: precision_at_100
            value: 53.22
          - type: precision_at_1000
            value: 20.721999999999998
          - type: precision_at_20
            value: 67.30000000000001
          - type: precision_at_3
            value: 72.667
          - type: precision_at_5
            value: 74
          - type: recall_at_1
            value: 0.186
          - type: recall_at_10
            value: 1.932
          - type: recall_at_100
            value: 12.883
          - type: recall_at_1000
            value: 44.511
          - type: recall_at_20
            value: 3.583
          - type: recall_at_3
            value: 0.601
          - type: recall_at_5
            value: 1
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 2.308
          - type: map_at_10
            value: 9.744
          - type: map_at_100
            value: 15.859000000000002
          - type: map_at_1000
            value: 17.396
          - type: map_at_20
            value: 12.49
          - type: map_at_3
            value: 4.848
          - type: map_at_5
            value: 6.912999999999999
          - type: mrr_at_1
            value: 32.653
          - type: mrr_at_10
            value: 47.207
          - type: mrr_at_100
            value: 48.116
          - type: mrr_at_1000
            value: 48.116
          - type: mrr_at_20
            value: 47.735
          - type: mrr_at_3
            value: 42.857
          - type: mrr_at_5
            value: 44.285999999999994
          - type: ndcg_at_1
            value: 28.571
          - type: ndcg_at_10
            value: 24.421
          - type: ndcg_at_100
            value: 35.961
          - type: ndcg_at_1000
            value: 47.541
          - type: ndcg_at_20
            value: 25.999
          - type: ndcg_at_3
            value: 25.333
          - type: ndcg_at_5
            value: 25.532
          - type: precision_at_1
            value: 32.653
          - type: precision_at_10
            value: 22.448999999999998
          - type: precision_at_100
            value: 7.571
          - type: precision_at_1000
            value: 1.5310000000000001
          - type: precision_at_20
            value: 17.959
          - type: precision_at_3
            value: 26.531
          - type: precision_at_5
            value: 26.122
          - type: recall_at_1
            value: 2.308
          - type: recall_at_10
            value: 16.075
          - type: recall_at_100
            value: 47.357
          - type: recall_at_1000
            value: 82.659
          - type: recall_at_20
            value: 24.554000000000002
          - type: recall_at_3
            value: 5.909
          - type: recall_at_5
            value: 9.718
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 67.2998046875
          - type: ap
            value: 12.796222498684031
          - type: f1
            value: 51.7465070845071
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 61.76004527447652
          - type: f1
            value: 61.88985723942393
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 52.69229715788263
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.42325803182929
          - type: cos_sim_ap
            value: 78.29203513753492
          - type: cos_sim_f1
            value: 71.33160557818093
          - type: cos_sim_precision
            value: 67.00672385810341
          - type: cos_sim_recall
            value: 76.2532981530343
          - type: dot_accuracy
            value: 87.42325803182929
          - type: dot_ap
            value: 78.29208368244002
          - type: dot_f1
            value: 71.33160557818093
          - type: dot_precision
            value: 67.00672385810341
          - type: dot_recall
            value: 76.2532981530343
          - type: euclidean_accuracy
            value: 87.42325803182929
          - type: euclidean_ap
            value: 78.29202838891078
          - type: euclidean_f1
            value: 71.33160557818093
          - type: euclidean_precision
            value: 67.00672385810341
          - type: euclidean_recall
            value: 76.2532981530343
          - type: manhattan_accuracy
            value: 87.42325803182929
          - type: manhattan_ap
            value: 78.23964459648822
          - type: manhattan_f1
            value: 71.1651728553137
          - type: manhattan_precision
            value: 69.12935323383084
          - type: manhattan_recall
            value: 73.3245382585752
          - type: max_accuracy
            value: 87.42325803182929
          - type: max_ap
            value: 78.29208368244002
          - type: max_f1
            value: 71.33160557818093
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.00725734466566
          - type: cos_sim_ap
            value: 86.1594112416402
          - type: cos_sim_f1
            value: 78.544568993303
          - type: cos_sim_precision
            value: 73.42484097756947
          - type: cos_sim_recall
            value: 84.43178318447798
          - type: dot_accuracy
            value: 89.00725734466566
          - type: dot_ap
            value: 86.15940795129771
          - type: dot_f1
            value: 78.544568993303
          - type: dot_precision
            value: 73.42484097756947
          - type: dot_recall
            value: 84.43178318447798
          - type: euclidean_accuracy
            value: 89.00725734466566
          - type: euclidean_ap
            value: 86.15939689541806
          - type: euclidean_f1
            value: 78.544568993303
          - type: euclidean_precision
            value: 73.42484097756947
          - type: euclidean_recall
            value: 84.43178318447798
          - type: manhattan_accuracy
            value: 88.97426941436721
          - type: manhattan_ap
            value: 86.14154348065739
          - type: manhattan_f1
            value: 78.53991175290814
          - type: manhattan_precision
            value: 74.60339452719086
          - type: manhattan_recall
            value: 82.91499846011703
          - type: max_accuracy
            value: 89.00725734466566
          - type: max_ap
            value: 86.1594112416402
          - type: max_f1
            value: 78.544568993303