|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: Labira/LabiraPJOK_2_100_Full |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Labira/LabiraPJOK_3_100_Full |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Labira/LabiraPJOK_3_100_Full |
|
|
|
This model is a fine-tuned version of [Labira/LabiraPJOK_2_100_Full](https://huggingface.co/Labira/LabiraPJOK_2_100_Full) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0072 |
|
- Validation Loss: 0.0012 |
|
- Epoch: 26 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1100, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 2.7614 | 1.1522 | 0 | |
|
| 1.5531 | 0.5524 | 1 | |
|
| 1.0482 | 0.2232 | 2 | |
|
| 0.5443 | 0.0847 | 3 | |
|
| 0.5227 | 0.0529 | 4 | |
|
| 0.2873 | 0.0412 | 5 | |
|
| 0.2568 | 0.0330 | 6 | |
|
| 0.1310 | 0.0190 | 7 | |
|
| 0.1108 | 0.0067 | 8 | |
|
| 0.1252 | 0.0117 | 9 | |
|
| 0.0740 | 0.0071 | 10 | |
|
| 0.0507 | 0.0059 | 11 | |
|
| 0.0790 | 0.0058 | 12 | |
|
| 0.0282 | 0.0036 | 13 | |
|
| 0.0562 | 0.0070 | 14 | |
|
| 0.0850 | 0.0047 | 15 | |
|
| 0.0715 | 0.0176 | 16 | |
|
| 0.0724 | 0.0077 | 17 | |
|
| 0.0361 | 0.0024 | 18 | |
|
| 0.0266 | 0.0029 | 19 | |
|
| 0.0207 | 0.0026 | 20 | |
|
| 0.0158 | 0.0023 | 21 | |
|
| 0.0086 | 0.0016 | 22 | |
|
| 0.0214 | 0.0093 | 23 | |
|
| 0.0327 | 0.0063 | 24 | |
|
| 0.0102 | 0.0016 | 25 | |
|
| 0.0072 | 0.0012 | 26 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- TensorFlow 2.17.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|