Edit model card

marianmt-th-zh_cn

  • source languages: th
  • target languages: zh_cn
  • dataset:
  • model: transformer-align
  • pre-processing: normalization + SentencePiece
  • test set scores: 15.53

Training

Training scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-th-zh_cn.

export WANDB_PROJECT=marianmt-th-zh_cn
python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\
\\\\t--output_dir ../models/marianmt-th-zh_cn \\\\\\\\
\\\\t--source_lang th --target_lang zh \\\\\\\\
\\\\t--metric_tokenize zh --fp16

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
 
tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th")
model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu()

src_text = [
    'ฉันรักคุณ',
    'ฉันอยากกินข้าว',
]
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
print([tokenizer.decode(t, skip_special_tokens=True) for t in translated])

> ['我爱你', '我想吃饭。']

Requirements

transformers==4.6.0
torch==1.8.0
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.