|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
|
|
<p align="center"> |
|
<img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/> |
|
<p> |
|
<h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2> |
|
<h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> |
|
|
|
|
|
|
|
|
|
## 📰 News |
|
* **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. |
|
* **[2024.01.17]** 🔥🔥🔥 Our [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) has been accepted at ICLR 2024! |
|
* **[2024.01.16]** 🔥🔥🔥 We reorganize the code and support LoRA fine-tuning, checking [finetune_lora.sh](scripts/v1_5/finetune_lora.sh). |
|
* **[2023.11.30]** 🤝 Thanks to the generous contributions of the community, the [OpenXLab's demo](https://openxlab.org.cn/apps/detail/houshaowei/Video-LLaVA) is now accessible. |
|
* **[2023.11.23]** We are training a new and powerful model. |
|
* **[2023.11.21]** 🤝 Check out the [replicate demo](https://replicate.com/nateraw/video-llava), created by [@nateraw](https://github.com/nateraw), who has generously supported our research! |
|
* **[2023.11.20]** 🤗 [Hugging Face demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates. |
|
|
|
## 😮 Highlights |
|
|
|
Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset. |
|
|
|
### 💡 Simple baseline, learning united visual representation by alignment before projection |
|
- With **the binding of unified visual representations to the language feature space**, we enable an LLM to perform visual reasoning capabilities on both images and videos simultaneously. |
|
|
|
### 🔥 High performance, complementary learning with video and image |
|
- Extensive experiments demonstrate **the complementarity of modalities**, showcasing significant superiority when compared to models specifically designed for either images or videos. |
|
|
|
|
|
## 🤗 Demo |
|
|
|
### Gradio Web UI |
|
|
|
Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by Video-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) in Huggingface Spaces. |
|
```bash |
|
python -m videollava.serve.gradio_web_server |
|
``` |
|
|
|
|
|
|
|
### CLI Inference |
|
|
|
```bash |
|
python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/video.mp4" --load-4bit |
|
``` |
|
|
|
```bash |
|
python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/image.jpg" --load-4bit |
|
``` |
|
|
|
|
|
|
|
## 🛠️ Requirements and Installation |
|
* Python >= 3.10 |
|
* Pytorch == 2.0.1 |
|
* CUDA Version >= 11.7 |
|
* Install required packages: |
|
```bash |
|
git clone https://github.com/PKU-YuanGroup/Video-LLaVA |
|
cd Video-LLaVA |
|
conda create -n videollava python=3.10 -y |
|
conda activate videollava |
|
pip install --upgrade pip # enable PEP 660 support |
|
pip install -e . |
|
pip install -e ".[train]" |
|
pip install flash-attn --no-build-isolation |
|
pip install decord opencv-python git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d |
|
``` |
|
|
|
## 🤖 API |
|
**We open source all codes.** If you want to load the model (e.g. ```LanguageBind/Video-LLaVA-7B```) on local, you can use the following code snippets. |
|
|
|
### Inference for image |
|
```python |
|
import torch |
|
from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN |
|
from videollava.conversation import conv_templates, SeparatorStyle |
|
from videollava.model.builder import load_pretrained_model |
|
from videollava.utils import disable_torch_init |
|
from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
def main(): |
|
disable_torch_init() |
|
image = 'videollava/serve/examples/extreme_ironing.jpg' |
|
inp = 'What is unusual about this image?' |
|
model_path = 'LanguageBind/Video-LLaVA-7B' |
|
cache_dir = 'cache_dir' |
|
device = 'cuda' |
|
load_4bit, load_8bit = True, False |
|
model_name = get_model_name_from_path(model_path) |
|
tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir) |
|
image_processor = processor['image'] |
|
conv_mode = "llava_v1" |
|
conv = conv_templates[conv_mode].copy() |
|
roles = conv.roles |
|
|
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] |
|
if type(image_tensor) is list: |
|
tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] |
|
else: |
|
tensor = image_tensor.to(model.device, dtype=torch.float16) |
|
|
|
print(f"{roles[1]}: {inp}") |
|
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp |
|
conv.append_message(conv.roles[0], inp) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=tensor, |
|
do_sample=True, |
|
temperature=0.2, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() |
|
print(outputs) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
``` |
|
|
|
### Inference for video |
|
```python |
|
import torch |
|
from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN |
|
from videollava.conversation import conv_templates, SeparatorStyle |
|
from videollava.model.builder import load_pretrained_model |
|
from videollava.utils import disable_torch_init |
|
from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
def main(): |
|
disable_torch_init() |
|
video = 'videollava/serve/examples/sample_demo_1.mp4' |
|
inp = 'Why is this video funny?' |
|
model_path = 'LanguageBind/Video-LLaVA-7B' |
|
cache_dir = 'cache_dir' |
|
device = 'cuda' |
|
load_4bit, load_8bit = True, False |
|
model_name = get_model_name_from_path(model_path) |
|
tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir) |
|
video_processor = processor['video'] |
|
conv_mode = "llava_v1" |
|
conv = conv_templates[conv_mode].copy() |
|
roles = conv.roles |
|
|
|
video_tensor = video_processor(video, return_tensors='pt')['pixel_values'] |
|
if type(video_tensor) is list: |
|
tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor] |
|
else: |
|
tensor = video_tensor.to(model.device, dtype=torch.float16) |
|
|
|
print(f"{roles[1]}: {inp}") |
|
inp = ' '.join([DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames) + '\n' + inp |
|
conv.append_message(conv.roles[0], inp) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=tensor, |
|
do_sample=True, |
|
temperature=0.1, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() |
|
print(outputs) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
``` |
|
|
|
## 🗝️ Training & Validating |
|
The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). |
|
|
|
## 👍 Acknowledgement |
|
* [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant. |
|
* [Video-ChatGPT](https://github.com/mbzuai-oryx/Video-ChatGPT) Great job contributing the evaluation code and dataset. |
|
|
|
## 🙌 Related Projects |
|
* [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework. |
|
* [Chat-UniVi](https://github.com/PKU-YuanGroup/Chat-UniVi) This framework empowers the model to efficiently utilize a limited number of visual tokens. |
|
|
|
## 🔒 License |
|
* The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/Video-LLaVA/blob/main/LICENSE) file. |
|
* The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. |
|
|
|
## ✏️ Citation |
|
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. |
|
|
|
```BibTeX |
|
@article{lin2023video, |
|
title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, |
|
author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, |
|
journal={arXiv preprint arXiv:2311.10122}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
```BibTeX |
|
@article{zhu2023languagebind, |
|
title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, |
|
author={Zhu, Bin and Lin, Bin and Ning, Munan and Yan, Yang and Cui, Jiaxi and Wang, HongFa and Pang, Yatian and Jiang, Wenhao and Zhang, Junwu and Li, Zongwei and others}, |
|
journal={arXiv preprint arXiv:2310.01852}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
<!----> |
|
## ✨ Star History |
|
[![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/Video-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/Video-LLaVA&Date) |
|
|
|
## 🤝 Contributors |
|
|
|
<a href="https://github.com/PKU-YuanGroup/Video-LLaVA/graphs/contributors"> |
|
<img src="https://contrib.rocks/image?repo=PKU-YuanGroup/Video-LLaVA" /> |
|
</a> |
|
|
|
|
|
|