LarryTsai's picture
Training Code:cls/det
b9425fd
|
raw
history blame
2.47 kB

COCO Object detection with RevCol

Getting started

We build RevCol object detection model based on mmdetection commit 3e26931. We add RevCol model and config files to the original repo. Please refer to get_started.md for installation and dataset preparation instructions.

Results and Fine-tuned Models

name Pretrained Model Method Lr Schd box mAP mask mAP #params FLOPs Fine-tuned Model
RevCol-T ImageNet-1K Cascade Mask R-CNN 3x 50.6 43.8 88M 741G model
RevCol-S ImageNet-1K Cascade Mask R-CNN 3x 52.6 45.5 118M 833G model
RevCol-B ImageNet-1K Cascade Mask R-CNN 3x 53.0 45.9 196M 988G model
RevCol-B ImageNet-22K Cascade Mask R-CNN 3x 55.0 47.5 196M 988G model
RevCol-L ImageNet-22K Cascade Mask R-CNN 3x 55.9 48.4 330M 1453G model

Training

To train a detector with pre-trained models, run:

# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.pretrained=<PRETRAIN_MODEL> [other optional arguments]

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [other optional arguments] 

For example, to train a Cascade Mask R-CNN model with a RevCol-T backbone and 8 gpus, run:

tools/dist_train.sh configs/revcol/cascade_mask_rcnn_revcol_tiny_3x_in1k.py 8 --cfg-options pretrained=<PRETRAIN_MODEL>

More config files can be found at configs/revcol.

Inference

# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm

Acknowledgment

This code is built using mmdetection, timm libraries, and BeiT, Swin Transformer repositories.