COCO Object detection with RevCol
Getting started
We build RevCol object detection model based on mmdetection commit 3e26931
. We add RevCol model and config files to the original repo. Please refer to get_started.md for installation and dataset preparation instructions.
Results and Fine-tuned Models
name | Pretrained Model | Method | Lr Schd | box mAP | mask mAP | #params | FLOPs | Fine-tuned Model |
---|---|---|---|---|---|---|---|---|
RevCol-T | ImageNet-1K | Cascade Mask R-CNN | 3x | 50.6 | 43.8 | 88M | 741G | model |
RevCol-S | ImageNet-1K | Cascade Mask R-CNN | 3x | 52.6 | 45.5 | 118M | 833G | model |
RevCol-B | ImageNet-1K | Cascade Mask R-CNN | 3x | 53.0 | 45.9 | 196M | 988G | model |
RevCol-B | ImageNet-22K | Cascade Mask R-CNN | 3x | 55.0 | 47.5 | 196M | 988G | model |
RevCol-L | ImageNet-22K | Cascade Mask R-CNN | 3x | 55.9 | 48.4 | 330M | 1453G | model |
Training
To train a detector with pre-trained models, run:
# single-gpu training
python tools/train.py <CONFIG_FILE> --cfg-options model.pretrained=<PRETRAIN_MODEL> [other optional arguments]
# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [other optional arguments]
For example, to train a Cascade Mask R-CNN model with a RevCol-T
backbone and 8 gpus, run:
tools/dist_train.sh configs/revcol/cascade_mask_rcnn_revcol_tiny_3x_in1k.py 8 --cfg-options pretrained=<PRETRAIN_MODEL>
More config files can be found at configs/revcol
.
Inference
# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm
# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm
Acknowledgment
This code is built using mmdetection, timm libraries, and BeiT, Swin Transformer repositories.