PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
Follow to eval the agent locally:
repo_id = "Laz4rz/hf-LunarLander-1-ppo" # The repo_id
filename = "ppo-LunarLander-v2.zip" # The model filename.zip
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint)
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
...
- Downloads last month
- 3
Evaluation results
- mean_reward on LunarLander-v2self-reported261.43 +/- 17.17