Laz4rz commited on
Commit
84e18c7
1 Parent(s): fa86a08

add PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.43 +/- 17.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a01fc09ab90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a01fc09ac20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a01fc09acb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a01fc09ad40>", "_build": "<function ActorCriticPolicy._build at 0x7a01fc09add0>", "forward": "<function ActorCriticPolicy.forward at 0x7a01fc09ae60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a01fc09aef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a01fc09af80>", "_predict": "<function ActorCriticPolicy._predict at 0x7a01fc09b010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a01fc09b0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a01fc09b130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a01fc09b1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a01fc09c7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714162868647782617, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbdIb4/S60/aiKfvn0rjL5gYXG+YXSPvQAAAAAAAAAAJgZ9Ps+iND4WhuO9u1NNvslTzTxDYeq8AAAAAAAAAADQ74C+LFMVP5a3dz62mH2+TySSuk7Rsz0AAAAAAAAAAHZe7z7v7is/SMfMPZ5Fwr5glFU+DWjZvQAAAAAAAAAAc1gmvlEiBj8Oop890U9ZvgDcBb32Zvw8AAAAAAAAAACt7Te+DzRovJyXtbobtSS4sInKPa8YvDkAAIA/AACAP5q5E7yDrgm8yLuXu7sIrDyVJRk8K462PAAAgD8AAIA/zdThvNxrC7x5eMg8jd4FPWgtVr2Lcdo9AACAPwAAgD86/TA+DWUDPqJyAb07vjy+Gjr9PKoiAb4AAAAAAAAAAHOqIb5xkpA/PUWCvmP4t766z0i+NymuPQAAAAAAAAAAZuLdvEibi7pi55M4sxZAM5YVSDpkwaq3AACAPwAAgD+mEgI+qQtVvBw5E77NIt87v6swPsEmHL4AAIA/AACAP3NrgD1nmgU+7QaVvD5udL4kMYE9KgUZvQAAAAAAAAAATbGOPXGJGz+58D88Zv/LvmP1WbsOiMS7AAAAAAAAAAAjBYE+Z4YXvbbZCzuOo4i5f0iEvmJnT7oAAIA/AACAP81Vqz1FbrY/Qg3uPrEeNL75u6o9KeE+PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG866URnOB2MAWyUTVUBjAF0lEdAlKpzCxeLN3V9lChoBkdAcDQ/GEPDpGgHTVEBaAhHQJSrGxrzoU11fZQoaAZHQHMXc63iJfpoB01PAWgIR0CUrLMOwxFidX2UKGgGR0Btd5gG8mKJaAdN0AFoCEdAlK36bvw3HnV9lChoBkdAbejqUNayKWgHTVkBaAhHQJSvNZdOZb91fZQoaAZHQG96qBun/DNoB01wAWgIR0CUwYIF/x2CdX2UKGgGR0BwtHjFQ2uQaAdNGAFoCEdAlMGmce8wpXV9lChoBkdAcSsBZZB9kWgHTRQBaAhHQJTCShUR3/x1fZQoaAZHQGz+OfVZs9BoB00vAWgIR0CUwtQl8gIQdX2UKGgGR0Bxd80VJtiyaAdNSgFoCEdAlMO2+wkgOnV9lChoBkdAcIakWRA8jmgHTV4BaAhHQJTD1TfixV11fZQoaAZHQDZKfe1rqMZoB0vmaAhHQJTEpNRFZxJ1fZQoaAZHQHCmp3HJcPhoB01RAWgIR0CUxLQe3hGZdX2UKGgGR0ByGQGiYb84aAdNkAFoCEdAlMYAOBlMAXV9lChoBkdAb+HH80k4WGgHTVABaAhHQJTGeOo5xR51fZQoaAZHQG+AbKJVKf5oB01eAWgIR0CUx+po9LYgdX2UKGgGR0BvOU9ECvHMaAdNJAFoCEdAlMhWlqJuVHV9lChoBkdAb5i1G9YfXGgHTREBaAhHQJTI84JeE7J1fZQoaAZHQG5nBi9Zid9oB02IAWgIR0CUyPRRdhRZdX2UKGgGR0ByNq22G7BgaAdNGwFoCEdAlMoqMJhOQHV9lChoBkdAckHpTdcjaGgHTTMBaAhHQJTLz9sJpnJ1fZQoaAZHQCcdGLDQ7cRoB0veaAhHQJTL+5AhStN1fZQoaAZHQGLdnd43WFxoB03oA2gIR0CUzErGza9LdX2UKGgGR0BwEIyVObiIaAdNLwFoCEdAlMxreyiVSnV9lChoBkdAbj/QgLZzxWgHTSABaAhHQJTNSxwAEMd1fZQoaAZHQGxQ8jJMg2ZoB01FAWgIR0CUzZc4YJmedX2UKGgGR0BxofpGFzuGaAdNWAFoCEdAlNAgr+YMOXV9lChoBkdAcF89ph4MW2gHTa0BaAhHQJTQLuLJjlR1fZQoaAZHQHBky0a6z3RoB00xAWgIR0CU0x/SYw7DdX2UKGgGR0BwzIcZLqUvaAdNZwFoCEdAlNOzwx33YnV9lChoBkdAcH2vmYBvJmgHTTcBaAhHQJTUF4B3iaR1fZQoaAZHQHDKkv4/NaBoB00uAWgIR0CU1G1bqyGBdX2UKGgGR0BwKlTS9du6aAdNUwFoCEdAlNY9l7MPjHV9lChoBkdAciKDSw4bTGgHTQEBaAhHQJTXc9wFTvR1fZQoaAZHQG1cmEf1YhdoB01EAWgIR0CU16sxfv4NdX2UKGgGR0Bu6zCYTj//aAdNNgFoCEdAlNlYhIOH33V9lChoBkdAcgszXBguy2gHTRIBaAhHQJTZ/ENvwVl1fZQoaAZHQG8uRIJ7b+NoB01NAWgIR0CU2labWmP6dX2UKGgGR0BtC8IPbwjMaAdNKgFoCEdAlNqD4k/r0XV9lChoBkdAcNXAuqWC3GgHTVcBaAhHQJTbGT+vQnh1fZQoaAZHQG+bk30f5k9oB00iAWgIR0CU3R1fE4vOdX2UKGgGR0BwfDdJrcj8aAdNLAFoCEdAlN1yCSRr8HV9lChoBkdAcmHXmNipemgHTS0BaAhHQJTgfUc4o7V1fZQoaAZHQHAkTQE6kqNoB00eAWgIR0CU4H8twrDqdX2UKGgGR0BwgDQfIS13aAdNAAFoCEdAlODHTEzfrXV9lChoBkdAcakB9kSVW2gHTUsBaAhHQJThXM+u/1x1fZQoaAZHQHEGVDKHO8loB006AWgIR0CU4Xh+OOsDdX2UKGgGR0BDZz/p+tr9aAdL6GgIR0CU46nHeaa1dX2UKGgGR0Bx8YkgOjIraAdL8mgIR0CU5GskY4yXdX2UKGgGR0ByhKih37k5aAdNXAFoCEdAlOZzySV4YHV9lChoBkdAca4nLJSzgWgHTXYBaAhHQJTneoMrmQt1fZQoaAZHQG5sNCRfWtloB00wAWgIR0CU55XXAdn1dX2UKGgGR0Bu/QPbwjMWaAdNIgFoCEdAlOfX9R77bnV9lChoBkdAcGivK2a2F2gHTQ0BaAhHQJTqiZ7Xxvx1fZQoaAZHQHG3EYwZflZoB02oAWgIR0CVAbS00FbFdX2UKGgGR0Bw3mmO2iL3aAdNSAFoCEdAlQI664Ds+nV9lChoBkdAYiuf9xZMc2gHTegDaAhHQJUC0A5q/M51fZQoaAZHQHBFBwl0HQhoB00eAWgIR0CVBNWhysCDdX2UKGgGR0Bw3p4xDb8FaAdNJwFoCEdAlQcpVbRne3V9lChoBkdAcf2ySFGoaWgHTUMBaAhHQJUHjDR+jM51fZQoaAZHQFXyf0VafSRoB03oA2gIR0CVB60P6KtQdX2UKGgGR0ByVNGSZBszaAdNPwFoCEdAlQg2XXyy2XV9lChoBkdAci3eMyad+WgHTVkBaAhHQJUIZXo1UER1fZQoaAZHQHJqpM10knloB00OAWgIR0CVCL1XNke7dX2UKGgGR0BxELq4YrJ9aAdNGQFoCEdAlQrqInBtUHV9lChoBkdAb+Y5tm+TNmgHTSQBaAhHQJUMUb+98JF1fZQoaAZHQHC04CdSVGFoB00mAWgIR0CVDHtKZlWfdX2UKGgGR0BxFzJGOMl1aAdNZwFoCEdAlQ5ZEDyOJnV9lChoBkdAcXwxVhkRSWgHTRwBaAhHQJUPJIVdonN1fZQoaAZHQEMTcgyM1j1oB0vaaAhHQJUPegZjx1B1fZQoaAZHQHCSn5N47ihoB00TAWgIR0CVEFh9srNGdX2UKGgGR0ByDrZ5AyEdaAdNaQFoCEdAlRHOR5kbxXV9lChoBkdAb1UHQhOgx2gHTRoBaAhHQJUS0VsUIs11fZQoaAZHQHHa20Z3s5ZoB00jAWgIR0CVEvYVqN6xdX2UKGgGR0BvlOMS9M9KaAdNRAFoCEdAlRStpyp71XV9lChoBkdAb9ZIg/1QImgHTXIBaAhHQJUU/oIOYpl1fZQoaAZHQG9v0ygwoLJoB00vAWgIR0CVFf/zJ6ppdX2UKGgGR0Bv7/3i704BaAdNGQFoCEdAlRaxUWEbpHV9lChoBkdAcWxBnjABUGgHTa0BaAhHQJUXjZcs1891fZQoaAZHQCOh/ustCiRoB0uxaAhHQJUYP8qFyrB1fZQoaAZHQHGwj9fkWARoB01OAWgIR0CVGEiz9jwydX2UKGgGR0BxsbUtqYZ3aAdNGQFoCEdAlRipng5zYHV9lChoBkdAcH2whGH58GgHTSQBaAhHQJUaIrXlKbt1fZQoaAZHQHHUIsZpBX1oB01CAWgIR0CVGsooNNJwdX2UKGgGR0Bwc/7bcoH+aAdNUAFoCEdAlRyAosqaw3V9lChoBkdAa2NLnLaEjGgHTSIBaAhHQJUdHbRF7Up1fZQoaAZHQDPA2hqTKT1oB0vSaAhHQJUdytp22Xt1fZQoaAZHQG1enlXA/LVoB00fAWgIR0CVHvkVN5+pdX2UKGgGR0BwMEbhm5DraAdNEAFoCEdAlR9eCPIXCXV9lChoBkdAcYWfYBeXzGgHTWkBaAhHQJUhcefZmI11fZQoaAZHQG8Lvuw5eZ5oB00lAWgIR0CVId7mdRR/dX2UKGgGR0Belql54W1uaAdN6ANoCEdAlSJvdZaFEnV9lChoBkdAa62Mc6vJR2gHTTMBaAhHQJUjJA0Kqn51fZQoaAZHQHF38F+uvEFoB01HAWgIR0CVI+Y8Md92dX2UKGgGR0Bws2St/4IsaAdNSwFoCEdAlSR8dxQzlHV9lChoBkdAbeNGecx0uGgHTSwBaAhHQJUk9bRnezl1fZQoaAZHQHGfBAOavzRoB00kAWgIR0CVJV0BOpKjdX2UKGgGR0Bu3oZOzposaAdNHgFoCEdAlSb1HOKO1nV9lChoBkdAZfpVwPy08mgHTegDaAhHQJUnOfvnbIt1fZQoaAZHQG8ZI6Kcd5poB00oAWgIR0CVJ+3eN1hcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3567e87607eefe7b328829df4879482c255e689916708bee832bc7ff34176d2
3
+ size 148076
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a01fc09ab90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a01fc09ac20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a01fc09acb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a01fc09ad40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a01fc09add0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a01fc09ae60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a01fc09aef0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a01fc09af80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a01fc09b010>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a01fc09b0a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a01fc09b130>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a01fc09b1c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a01fc09c7c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1714162868647782617,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbdIb4/S60/aiKfvn0rjL5gYXG+YXSPvQAAAAAAAAAAJgZ9Ps+iND4WhuO9u1NNvslTzTxDYeq8AAAAAAAAAADQ74C+LFMVP5a3dz62mH2+TySSuk7Rsz0AAAAAAAAAAHZe7z7v7is/SMfMPZ5Fwr5glFU+DWjZvQAAAAAAAAAAc1gmvlEiBj8Oop890U9ZvgDcBb32Zvw8AAAAAAAAAACt7Te+DzRovJyXtbobtSS4sInKPa8YvDkAAIA/AACAP5q5E7yDrgm8yLuXu7sIrDyVJRk8K462PAAAgD8AAIA/zdThvNxrC7x5eMg8jd4FPWgtVr2Lcdo9AACAPwAAgD86/TA+DWUDPqJyAb07vjy+Gjr9PKoiAb4AAAAAAAAAAHOqIb5xkpA/PUWCvmP4t766z0i+NymuPQAAAAAAAAAAZuLdvEibi7pi55M4sxZAM5YVSDpkwaq3AACAPwAAgD+mEgI+qQtVvBw5E77NIt87v6swPsEmHL4AAIA/AACAP3NrgD1nmgU+7QaVvD5udL4kMYE9KgUZvQAAAAAAAAAATbGOPXGJGz+58D88Zv/LvmP1WbsOiMS7AAAAAAAAAAAjBYE+Z4YXvbbZCzuOo4i5f0iEvmJnT7oAAIA/AACAP81Vqz1FbrY/Qg3uPrEeNL75u6o9KeE+PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG866URnOB2MAWyUTVUBjAF0lEdAlKpzCxeLN3V9lChoBkdAcDQ/GEPDpGgHTVEBaAhHQJSrGxrzoU11fZQoaAZHQHMXc63iJfpoB01PAWgIR0CUrLMOwxFidX2UKGgGR0Btd5gG8mKJaAdN0AFoCEdAlK36bvw3HnV9lChoBkdAbejqUNayKWgHTVkBaAhHQJSvNZdOZb91fZQoaAZHQG96qBun/DNoB01wAWgIR0CUwYIF/x2CdX2UKGgGR0BwtHjFQ2uQaAdNGAFoCEdAlMGmce8wpXV9lChoBkdAcSsBZZB9kWgHTRQBaAhHQJTCShUR3/x1fZQoaAZHQGz+OfVZs9BoB00vAWgIR0CUwtQl8gIQdX2UKGgGR0Bxd80VJtiyaAdNSgFoCEdAlMO2+wkgOnV9lChoBkdAcIakWRA8jmgHTV4BaAhHQJTD1TfixV11fZQoaAZHQDZKfe1rqMZoB0vmaAhHQJTEpNRFZxJ1fZQoaAZHQHCmp3HJcPhoB01RAWgIR0CUxLQe3hGZdX2UKGgGR0ByGQGiYb84aAdNkAFoCEdAlMYAOBlMAXV9lChoBkdAb+HH80k4WGgHTVABaAhHQJTGeOo5xR51fZQoaAZHQG+AbKJVKf5oB01eAWgIR0CUx+po9LYgdX2UKGgGR0BvOU9ECvHMaAdNJAFoCEdAlMhWlqJuVHV9lChoBkdAb5i1G9YfXGgHTREBaAhHQJTI84JeE7J1fZQoaAZHQG5nBi9Zid9oB02IAWgIR0CUyPRRdhRZdX2UKGgGR0ByNq22G7BgaAdNGwFoCEdAlMoqMJhOQHV9lChoBkdAckHpTdcjaGgHTTMBaAhHQJTLz9sJpnJ1fZQoaAZHQCcdGLDQ7cRoB0veaAhHQJTL+5AhStN1fZQoaAZHQGLdnd43WFxoB03oA2gIR0CUzErGza9LdX2UKGgGR0BwEIyVObiIaAdNLwFoCEdAlMxreyiVSnV9lChoBkdAbj/QgLZzxWgHTSABaAhHQJTNSxwAEMd1fZQoaAZHQGxQ8jJMg2ZoB01FAWgIR0CUzZc4YJmedX2UKGgGR0BxofpGFzuGaAdNWAFoCEdAlNAgr+YMOXV9lChoBkdAcF89ph4MW2gHTa0BaAhHQJTQLuLJjlR1fZQoaAZHQHBky0a6z3RoB00xAWgIR0CU0x/SYw7DdX2UKGgGR0BwzIcZLqUvaAdNZwFoCEdAlNOzwx33YnV9lChoBkdAcH2vmYBvJmgHTTcBaAhHQJTUF4B3iaR1fZQoaAZHQHDKkv4/NaBoB00uAWgIR0CU1G1bqyGBdX2UKGgGR0BwKlTS9du6aAdNUwFoCEdAlNY9l7MPjHV9lChoBkdAciKDSw4bTGgHTQEBaAhHQJTXc9wFTvR1fZQoaAZHQG1cmEf1YhdoB01EAWgIR0CU16sxfv4NdX2UKGgGR0Bu6zCYTj//aAdNNgFoCEdAlNlYhIOH33V9lChoBkdAcgszXBguy2gHTRIBaAhHQJTZ/ENvwVl1fZQoaAZHQG8uRIJ7b+NoB01NAWgIR0CU2labWmP6dX2UKGgGR0BtC8IPbwjMaAdNKgFoCEdAlNqD4k/r0XV9lChoBkdAcNXAuqWC3GgHTVcBaAhHQJTbGT+vQnh1fZQoaAZHQG+bk30f5k9oB00iAWgIR0CU3R1fE4vOdX2UKGgGR0BwfDdJrcj8aAdNLAFoCEdAlN1yCSRr8HV9lChoBkdAcmHXmNipemgHTS0BaAhHQJTgfUc4o7V1fZQoaAZHQHAkTQE6kqNoB00eAWgIR0CU4H8twrDqdX2UKGgGR0BwgDQfIS13aAdNAAFoCEdAlODHTEzfrXV9lChoBkdAcakB9kSVW2gHTUsBaAhHQJThXM+u/1x1fZQoaAZHQHEGVDKHO8loB006AWgIR0CU4Xh+OOsDdX2UKGgGR0BDZz/p+tr9aAdL6GgIR0CU46nHeaa1dX2UKGgGR0Bx8YkgOjIraAdL8mgIR0CU5GskY4yXdX2UKGgGR0ByhKih37k5aAdNXAFoCEdAlOZzySV4YHV9lChoBkdAca4nLJSzgWgHTXYBaAhHQJTneoMrmQt1fZQoaAZHQG5sNCRfWtloB00wAWgIR0CU55XXAdn1dX2UKGgGR0Bu/QPbwjMWaAdNIgFoCEdAlOfX9R77bnV9lChoBkdAcGivK2a2F2gHTQ0BaAhHQJTqiZ7Xxvx1fZQoaAZHQHG3EYwZflZoB02oAWgIR0CVAbS00FbFdX2UKGgGR0Bw3mmO2iL3aAdNSAFoCEdAlQI664Ds+nV9lChoBkdAYiuf9xZMc2gHTegDaAhHQJUC0A5q/M51fZQoaAZHQHBFBwl0HQhoB00eAWgIR0CVBNWhysCDdX2UKGgGR0Bw3p4xDb8FaAdNJwFoCEdAlQcpVbRne3V9lChoBkdAcf2ySFGoaWgHTUMBaAhHQJUHjDR+jM51fZQoaAZHQFXyf0VafSRoB03oA2gIR0CVB60P6KtQdX2UKGgGR0ByVNGSZBszaAdNPwFoCEdAlQg2XXyy2XV9lChoBkdAci3eMyad+WgHTVkBaAhHQJUIZXo1UER1fZQoaAZHQHJqpM10knloB00OAWgIR0CVCL1XNke7dX2UKGgGR0BxELq4YrJ9aAdNGQFoCEdAlQrqInBtUHV9lChoBkdAb+Y5tm+TNmgHTSQBaAhHQJUMUb+98JF1fZQoaAZHQHC04CdSVGFoB00mAWgIR0CVDHtKZlWfdX2UKGgGR0BxFzJGOMl1aAdNZwFoCEdAlQ5ZEDyOJnV9lChoBkdAcXwxVhkRSWgHTRwBaAhHQJUPJIVdonN1fZQoaAZHQEMTcgyM1j1oB0vaaAhHQJUPegZjx1B1fZQoaAZHQHCSn5N47ihoB00TAWgIR0CVEFh9srNGdX2UKGgGR0ByDrZ5AyEdaAdNaQFoCEdAlRHOR5kbxXV9lChoBkdAb1UHQhOgx2gHTRoBaAhHQJUS0VsUIs11fZQoaAZHQHHa20Z3s5ZoB00jAWgIR0CVEvYVqN6xdX2UKGgGR0BvlOMS9M9KaAdNRAFoCEdAlRStpyp71XV9lChoBkdAb9ZIg/1QImgHTXIBaAhHQJUU/oIOYpl1fZQoaAZHQG9v0ygwoLJoB00vAWgIR0CVFf/zJ6ppdX2UKGgGR0Bv7/3i704BaAdNGQFoCEdAlRaxUWEbpHV9lChoBkdAcWxBnjABUGgHTa0BaAhHQJUXjZcs1891fZQoaAZHQCOh/ustCiRoB0uxaAhHQJUYP8qFyrB1fZQoaAZHQHGwj9fkWARoB01OAWgIR0CVGEiz9jwydX2UKGgGR0BxsbUtqYZ3aAdNGQFoCEdAlRipng5zYHV9lChoBkdAcH2whGH58GgHTSQBaAhHQJUaIrXlKbt1fZQoaAZHQHHUIsZpBX1oB01CAWgIR0CVGsooNNJwdX2UKGgGR0Bwc/7bcoH+aAdNUAFoCEdAlRyAosqaw3V9lChoBkdAa2NLnLaEjGgHTSIBaAhHQJUdHbRF7Up1fZQoaAZHQDPA2hqTKT1oB0vSaAhHQJUdytp22Xt1fZQoaAZHQG1enlXA/LVoB00fAWgIR0CVHvkVN5+pdX2UKGgGR0BwMEbhm5DraAdNEAFoCEdAlR9eCPIXCXV9lChoBkdAcYWfYBeXzGgHTWkBaAhHQJUhcefZmI11fZQoaAZHQG8Lvuw5eZ5oB00lAWgIR0CVId7mdRR/dX2UKGgGR0Belql54W1uaAdN6ANoCEdAlSJvdZaFEnV9lChoBkdAa62Mc6vJR2gHTTMBaAhHQJUjJA0Kqn51fZQoaAZHQHF38F+uvEFoB01HAWgIR0CVI+Y8Md92dX2UKGgGR0Bws2St/4IsaAdNSwFoCEdAlSR8dxQzlHV9lChoBkdAbeNGecx0uGgHTSwBaAhHQJUk9bRnezl1fZQoaAZHQHGfBAOavzRoB00kAWgIR0CVJV0BOpKjdX2UKGgGR0Bu3oZOzposaAdNHgFoCEdAlSb1HOKO1nV9lChoBkdAZfpVwPy08mgHTegDaAhHQJUnOfvnbIt1fZQoaAZHQG8ZI6Kcd5poB00oAWgIR0CVJ+3eN1hcdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b873a5b4d1f284ec2b99b3faec05e21da1bf5d1691cbe809032cc020fca794a
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44213bfee747206799bcf3a98122c682243e00539695c08e5804573bef549b78
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (172 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.4333419, "std_reward": 17.166780973175854, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-26T20:45:32.448381"}