|
--- |
|
license: apache-2.0 |
|
base_model: LazarusNLP/IndoNanoT5-base |
|
tags: |
|
- generated_from_trainer |
|
language: |
|
- ind |
|
datasets: |
|
- GEM/indonlg |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: LazarusNLP/IndoNanoT5-base-IndoSum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: indonlg |
|
type: indonlg |
|
config: indosum |
|
split: test |
|
args: indosum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.7529 |
|
- name: Rouge2 |
|
type: rouge |
|
value: 0.7123 |
|
- name: RougeL |
|
type: rouge |
|
value: 0.733 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LazarusNLP/IndoNanoT5-base-IndoSum |
|
|
|
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on the indonlg dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1086 |
|
- Rouge1: 0.7529 |
|
- Rouge2: 0.7123 |
|
- Rougel: 0.733 |
|
- Rougelsum: 0.733 |
|
- Gen Len: 110.0391 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.3004 | 1.0 | 1761 | 0.1682 | 0.258 | 0.2277 | 0.2549 | 0.255 | 19.0 | |
|
| 0.1463 | 2.0 | 3522 | 0.1318 | 0.2596 | 0.2305 | 0.2563 | 0.2565 | 19.0 | |
|
| 0.095 | 3.0 | 5283 | 0.1272 | 0.2602 | 0.2314 | 0.2571 | 0.257 | 19.0 | |
|
| 0.0705 | 4.0 | 7044 | 0.1186 | 0.2622 | 0.2338 | 0.2592 | 0.2592 | 19.0 | |
|
| 0.0436 | 5.0 | 8805 | 0.1236 | 0.2625 | 0.2342 | 0.2594 | 0.2596 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.2.0+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|