Text Classification
Transformers
TensorBoard
Safetensors
Indonesian
albert
Generated from Trainer
Inference Endpoints
w11wo's picture
Update README.md
e5ec579 verified
metadata
license: mit
base_model: indobenchmark/indobert-lite-base-p1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
language:
  - ind
datasets:
  - indonli
  - MoritzLaurer/multilingual-NLI-26lang-2mil7
  - LazarusNLP/multilingual-NLI-26lang-2mil7-id
widget:
  - text: Andi tersenyum karena mendapat hasil baik. </s></s> Andi sedih.
model-index:
  - name: indobert-lite-base-p1-indonli-multilingual-nli-distil-mdeberta
    results: []

IndoBERT Lite Base IndoNLI Multilingual NLI Distil mDeBERTa

IndoBERT Lite Base IndoNLI Multilingual NLI Distil mDeBERTa is a natural language inference (NLI) model based on the ALBERT model. The model was originally the pre-trained indobenchmark/indobert-lite-base-p1 model, which is then fine-tuned on IndoNLI and the Indonesian subsets of MoritzLaurer/multilingual-NLI-26lang-2mil7, whilst being distilled from MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7.

Evaluation Results

dev Acc. test_lay Acc. test_expert Acc.
IndoNLI 78.60 74.69 65.55

Model

Model #params Arch. Training/Validation data (text)
indobert-lite-base-p1-indonli-multilingual-nli-distil-mdeberta 11.7M ALBERT Base IndoNLI, Multilingual NLI (id)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4808 1.0 1803 0.4418 0.7683 0.7593 0.7904 0.7554
0.4529 2.0 3606 0.4343 0.7738 0.7648 0.7893 0.7619
0.4263 3.0 5409 0.4383 0.7861 0.7828 0.7874 0.7807
0.398 4.0 7212 0.4456 0.7792 0.7767 0.7792 0.7756
0.3772 5.0 9015 0.4499 0.7711 0.7674 0.7700 0.7661

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0

References

[1] Mahendra, R., Aji, A. F., Louvan, S., Rahman, F., & Vania, C. (2021, November). IndoNLI: A Natural Language Inference Dataset for Indonesian. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.