File size: 6,361 Bytes
55b7fbc b21ace7 1a065d9 b21ace7 1a065d9 d032d3e aad36d1 d032d3e aad36d1 d032d3e aad36d1 d032d3e aad36d1 d032d3e aad36d1 d032d3e aad36d1 d032d3e aad36d1 d032d3e aad36d1 d032d3e 1a065d9 55b7fbc b21ace7 834c49c b21ace7 297899b b21ace7 5ef0b24 b21ace7 aad36d1 b21ace7 297899b b21ace7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
base_model: LemiSt/SmolLM-135M-de
library_name: transformers
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: SmolLM-135M-instruct-de-merged
results:
- task:
type: text-generation
dataset:
name: openai/MMMLU
type: mmlu
metrics:
- name: MMMLU(DE_DE) (0-Shot)
type: accuracy
value: 25.57
verified: false
- task:
type: text-generation
dataset:
name: openai/MMMLU
type: mmlu
metrics:
- name: MMMLU(DE_DE) (5-Shot)
type: accuracy
value: 24.88
verified: false
- task:
type: text-generation
dataset:
name: alexandrainst/m_arc
type: arc
metrics:
- name: ARC Challenge (DE) (0-Shot)
type: accuracy
value: 24.29
verified: false
- task:
type: text-generation
dataset:
name: alexandrainst/m_arc
type: arc
metrics:
- name: ARC Challenge (DE) (5-Shot)
type: accuracy
value: 24.38
verified: false
- task:
type: text-generation
dataset:
name: deutsche-telekom/Ger-RAG-eval
type: Ger-RAG-eval
metrics:
- name: Task 1
type: accuracy
value: 25.2
verified: false
- name: Task 2
type: accuracy
value: 27.1
verified: false
- name: Task 3
type: accuracy
value: 50.9
verified: false
- name: Task 4
type: accuracy
value: 50.0
verified: false
language:
- de
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: LemiSt/SmolLM-135M-de
model_type: LlamaForCausalLM
tokenizer_type: GPT2Tokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub:
datasets:
- path: smollm_dataset.json
type: sharegpt
conversation: chatml
chat_template: chatml
default_system_prompt: "Du bist ein hilfreicher KI-Assistent."
dataset_prepared_path:
val_set_size: 0.05
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: smollm-135m-de-sft-qlora
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./outputs/smollm-135m-sft-qlora-out
hub_model_id: LemiSt/SmolLM-135M-instruct-de
hub_strategy: end
gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.003
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 4
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|endoftext|>"
eos_token: "<|endoftext|>"
unk_token: "<|endoftext|>"
```
</details><br>
# SmolLM-135M-instruct-de-merged
This model is a fine-tuned version of [LemiSt/SmolLM-135M-de](https://huggingface.co/LemiSt/SmolLM-135M-de) on an internal testing dataset with general chat examples.
It achieves the following results on the evaluation set:
- Loss: 0.7453
## Model description
For more information, see the model card of the [base model](https://huggingface.co/LemiSt/SmolLM-135M-de). This adapter was trained using qlora at rank 32 with alpha 16, applying a dataset of around 200k german chat samples for two epochs.
## Intended uses & limitations
Mainly playing around with tiny chat models - while the output is generally intact German and the model somewhat follows instructions, it makes too many mistakes to be deployed in a real world setting.
### Usage example
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
checkpoint = "LemiSt/SmolLM-135M-instruct-de-merged"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=device, torch_dtype=torch.bfloat16)
messages = [
{"role": "system", "content": "Du bist ein hilfreicher Assistent."},
{"role": "user", "content": "Was ist der Sinn des Lebens?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True).to(device)
outputs = model.generate(inputs, max_new_tokens=256, do_sample=True, temperature=0.4, top_p=0.9, repetition_penalty=1.1, top_k=512)
print(tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True))
```
## Training and evaluation data
Internal dataset which was compiled for another experiment.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6406 | 0.0005 | 1 | 1.6172 |
| 0.8219 | 0.2497 | 501 | 0.8901 |
| 0.8646 | 0.4995 | 1002 | 0.8370 |
| 0.8651 | 0.7492 | 1503 | 0.8052 |
| 0.7231 | 0.9989 | 2004 | 0.7827 |
| 0.7632 | 1.2468 | 2505 | 0.7673 |
| 0.7543 | 1.4967 | 3006 | 0.7536 |
| 0.7782 | 1.7466 | 3507 | 0.7469 |
| 0.6724 | 1.9966 | 4008 | 0.7453 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |