Add new SentenceTransformer model.
Browse files- README.md +128 -140
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
---
|
2 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
-
datasets: []
|
4 |
-
language: []
|
5 |
library_name: sentence-transformers
|
6 |
metrics:
|
7 |
- cosine_accuracy
|
@@ -45,34 +43,34 @@ tags:
|
|
45 |
- sentence-similarity
|
46 |
- feature-extraction
|
47 |
- generated_from_trainer
|
48 |
-
- dataset_size:
|
49 |
- loss:CoSENTLoss
|
50 |
widget:
|
51 |
-
- source_sentence:
|
52 |
sentences:
|
53 |
-
-
|
54 |
-
-
|
55 |
-
-
|
56 |
-
- source_sentence:
|
57 |
sentences:
|
58 |
-
-
|
59 |
-
-
|
60 |
-
-
|
61 |
-
- source_sentence:
|
62 |
sentences:
|
63 |
-
-
|
64 |
-
-
|
65 |
-
-
|
66 |
-
- source_sentence:
|
67 |
sentences:
|
68 |
-
-
|
69 |
-
-
|
70 |
-
-
|
71 |
-
- source_sentence:
|
72 |
sentences:
|
73 |
-
-
|
74 |
-
-
|
75 |
-
-
|
76 |
model-index:
|
77 |
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
78 |
results:
|
@@ -80,119 +78,119 @@ model-index:
|
|
80 |
type: binary-classification
|
81 |
name: Binary Classification
|
82 |
dataset:
|
83 |
-
name: custom arc semantics data
|
84 |
-
type: custom-arc-semantics-data
|
85 |
metrics:
|
86 |
- type: cosine_accuracy
|
87 |
-
value: 0.
|
88 |
name: Cosine Accuracy
|
89 |
- type: cosine_accuracy_threshold
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy Threshold
|
92 |
- type: cosine_f1
|
93 |
-
value: 0.
|
94 |
name: Cosine F1
|
95 |
- type: cosine_f1_threshold
|
96 |
-
value: 0.
|
97 |
name: Cosine F1 Threshold
|
98 |
- type: cosine_precision
|
99 |
-
value: 0.
|
100 |
name: Cosine Precision
|
101 |
- type: cosine_recall
|
102 |
-
value: 0.
|
103 |
name: Cosine Recall
|
104 |
- type: cosine_ap
|
105 |
-
value: 0.
|
106 |
name: Cosine Ap
|
107 |
- type: dot_accuracy
|
108 |
-
value: 0.
|
109 |
name: Dot Accuracy
|
110 |
- type: dot_accuracy_threshold
|
111 |
-
value: 0.
|
112 |
name: Dot Accuracy Threshold
|
113 |
- type: dot_f1
|
114 |
-
value: 0.
|
115 |
name: Dot F1
|
116 |
- type: dot_f1_threshold
|
117 |
-
value: 0.
|
118 |
name: Dot F1 Threshold
|
119 |
- type: dot_precision
|
120 |
-
value: 0.
|
121 |
name: Dot Precision
|
122 |
- type: dot_recall
|
123 |
-
value: 0.
|
124 |
name: Dot Recall
|
125 |
- type: dot_ap
|
126 |
-
value: 0.
|
127 |
name: Dot Ap
|
128 |
- type: manhattan_accuracy
|
129 |
-
value: 0.
|
130 |
name: Manhattan Accuracy
|
131 |
- type: manhattan_accuracy_threshold
|
132 |
-
value:
|
133 |
name: Manhattan Accuracy Threshold
|
134 |
- type: manhattan_f1
|
135 |
-
value: 0.
|
136 |
name: Manhattan F1
|
137 |
- type: manhattan_f1_threshold
|
138 |
-
value:
|
139 |
name: Manhattan F1 Threshold
|
140 |
- type: manhattan_precision
|
141 |
-
value: 0.
|
142 |
name: Manhattan Precision
|
143 |
- type: manhattan_recall
|
144 |
-
value: 0.
|
145 |
name: Manhattan Recall
|
146 |
- type: manhattan_ap
|
147 |
-
value: 0.
|
148 |
name: Manhattan Ap
|
149 |
- type: euclidean_accuracy
|
150 |
-
value: 0.
|
151 |
name: Euclidean Accuracy
|
152 |
- type: euclidean_accuracy_threshold
|
153 |
-
value: 1.
|
154 |
name: Euclidean Accuracy Threshold
|
155 |
- type: euclidean_f1
|
156 |
-
value: 0.
|
157 |
name: Euclidean F1
|
158 |
- type: euclidean_f1_threshold
|
159 |
-
value: 1.
|
160 |
name: Euclidean F1 Threshold
|
161 |
- type: euclidean_precision
|
162 |
-
value: 0.
|
163 |
name: Euclidean Precision
|
164 |
- type: euclidean_recall
|
165 |
-
value: 0.
|
166 |
name: Euclidean Recall
|
167 |
- type: euclidean_ap
|
168 |
-
value: 0.
|
169 |
name: Euclidean Ap
|
170 |
- type: max_accuracy
|
171 |
-
value: 0.
|
172 |
name: Max Accuracy
|
173 |
- type: max_accuracy_threshold
|
174 |
-
value:
|
175 |
name: Max Accuracy Threshold
|
176 |
- type: max_f1
|
177 |
-
value: 0.
|
178 |
name: Max F1
|
179 |
- type: max_f1_threshold
|
180 |
-
value:
|
181 |
name: Max F1 Threshold
|
182 |
- type: max_precision
|
183 |
-
value: 0.
|
184 |
name: Max Precision
|
185 |
- type: max_recall
|
186 |
-
value: 0.
|
187 |
name: Max Recall
|
188 |
- type: max_ap
|
189 |
-
value: 0.
|
190 |
name: Max Ap
|
191 |
---
|
192 |
|
193 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
194 |
|
195 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
196 |
|
197 |
## Model Details
|
198 |
|
@@ -202,7 +200,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
|
|
202 |
- **Maximum Sequence Length:** 256 tokens
|
203 |
- **Output Dimensionality:** 384 tokens
|
204 |
- **Similarity Function:** Cosine Similarity
|
205 |
-
|
|
|
206 |
<!-- - **Language:** Unknown -->
|
207 |
<!-- - **License:** Unknown -->
|
208 |
|
@@ -240,9 +239,9 @@ from sentence_transformers import SentenceTransformer
|
|
240 |
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc")
|
241 |
# Run inference
|
242 |
sentences = [
|
243 |
-
'
|
244 |
-
'
|
245 |
-
'
|
246 |
]
|
247 |
embeddings = model.encode(sentences)
|
248 |
print(embeddings.shape)
|
@@ -283,46 +282,46 @@ You can finetune this model on your own dataset.
|
|
283 |
### Metrics
|
284 |
|
285 |
#### Binary Classification
|
286 |
-
* Dataset: `custom-arc-semantics-data`
|
287 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
288 |
|
289 |
| Metric | Value |
|
290 |
|:-----------------------------|:-----------|
|
291 |
-
| cosine_accuracy | 0.
|
292 |
-
| cosine_accuracy_threshold | 0.
|
293 |
-
| cosine_f1 | 0.
|
294 |
-
| cosine_f1_threshold | 0.
|
295 |
-
| cosine_precision | 0.
|
296 |
-
| cosine_recall | 0.
|
297 |
-
| cosine_ap | 0.
|
298 |
-
| dot_accuracy | 0.
|
299 |
-
| dot_accuracy_threshold | 0.
|
300 |
-
| dot_f1 | 0.
|
301 |
-
| dot_f1_threshold | 0.
|
302 |
-
| dot_precision | 0.
|
303 |
-
| dot_recall | 0.
|
304 |
-
| dot_ap | 0.
|
305 |
-
| manhattan_accuracy | 0.
|
306 |
-
| manhattan_accuracy_threshold |
|
307 |
-
| manhattan_f1 | 0.
|
308 |
-
| manhattan_f1_threshold |
|
309 |
-
| manhattan_precision | 0.
|
310 |
-
| manhattan_recall | 0.
|
311 |
-
| manhattan_ap | 0.
|
312 |
-
| euclidean_accuracy | 0.
|
313 |
-
| euclidean_accuracy_threshold | 1.
|
314 |
-
| euclidean_f1 | 0.
|
315 |
-
| euclidean_f1_threshold | 1.
|
316 |
-
| euclidean_precision | 0.
|
317 |
-
| euclidean_recall | 0.
|
318 |
-
| euclidean_ap | 0.
|
319 |
-
| max_accuracy | 0.
|
320 |
-
| max_accuracy_threshold |
|
321 |
-
| max_f1 | 0.
|
322 |
-
| max_f1_threshold |
|
323 |
-
| max_precision | 0.
|
324 |
-
| max_recall | 0.
|
325 |
-
| **max_ap** | **0.
|
326 |
|
327 |
<!--
|
328 |
## Bias, Risks and Limitations
|
@@ -340,22 +339,22 @@ You can finetune this model on your own dataset.
|
|
340 |
|
341 |
### Training Dataset
|
342 |
|
343 |
-
####
|
344 |
|
345 |
-
|
346 |
-
* Size:
|
347 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
348 |
-
* Approximate statistics based on the first
|
349 |
| | text1 | text2 | label |
|
350 |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
351 |
| type | string | string | int |
|
352 |
-
| details | <ul><li>min: 3 tokens</li><li>mean: 7.
|
353 |
* Samples:
|
354 |
-
| text1
|
355 |
-
|
356 |
-
| <code>
|
357 |
-
| <code>
|
358 |
-
| <code>
|
359 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
360 |
```json
|
361 |
{
|
@@ -366,22 +365,22 @@ You can finetune this model on your own dataset.
|
|
366 |
|
367 |
### Evaluation Dataset
|
368 |
|
369 |
-
####
|
370 |
-
|
371 |
|
372 |
-
*
|
|
|
373 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
374 |
-
* Approximate statistics based on the first
|
375 |
| | text1 | text2 | label |
|
376 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
377 |
| type | string | string | int |
|
378 |
-
| details | <ul><li>min: 3 tokens</li><li>mean:
|
379 |
* Samples:
|
380 |
-
| text1
|
381 |
-
|
382 |
-
| <code>
|
383 |
-
| <code>
|
384 |
-
| <code>
|
385 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
386 |
```json
|
387 |
{
|
@@ -395,7 +394,7 @@ You can finetune this model on your own dataset.
|
|
395 |
|
396 |
- `eval_strategy`: epoch
|
397 |
- `learning_rate`: 2e-05
|
398 |
-
- `num_train_epochs`:
|
399 |
- `warmup_ratio`: 0.1
|
400 |
- `fp16`: True
|
401 |
- `batch_sampler`: no_duplicates
|
@@ -420,7 +419,7 @@ You can finetune this model on your own dataset.
|
|
420 |
- `adam_beta2`: 0.999
|
421 |
- `adam_epsilon`: 1e-08
|
422 |
- `max_grad_norm`: 1.0
|
423 |
-
- `num_train_epochs`:
|
424 |
- `max_steps`: -1
|
425 |
- `lr_scheduler_type`: linear
|
426 |
- `lr_scheduler_kwargs`: {}
|
@@ -518,27 +517,16 @@ You can finetune this model on your own dataset.
|
|
518 |
</details>
|
519 |
|
520 |
### Training Logs
|
521 |
-
| Epoch | Step | Training Loss | loss | custom-arc-semantics-
|
522 |
-
|
523 |
-
| None | 0 | - | - | 0.
|
524 |
-
| 1.0 |
|
525 |
-
| 2.0 |
|
526 |
-
| 3.0 | 210 | 0.6005 | 0.8398 | 0.9680 |
|
527 |
-
| 4.0 | 280 | 0.3021 | 0.7577 | 0.9703 |
|
528 |
-
| 5.0 | 350 | 0.2412 | 0.7216 | 0.9715 |
|
529 |
-
| 6.0 | 420 | 0.1816 | 0.7538 | 0.9722 |
|
530 |
-
| 7.0 | 490 | 0.1512 | 0.8049 | 0.9726 |
|
531 |
-
| 8.0 | 560 | 0.1208 | 0.7602 | 0.9726 |
|
532 |
-
| 9.0 | 630 | 0.0915 | 0.7286 | 0.9729 |
|
533 |
-
| 10.0 | 700 | 0.0553 | 0.7072 | 0.9729 |
|
534 |
-
| 11.0 | 770 | 0.0716 | 0.6984 | 0.9730 |
|
535 |
-
| 12.0 | 840 | 0.0297 | 0.7063 | 0.9725 |
|
536 |
-
| 13.0 | 910 | 0.0462 | 0.6997 | 0.9728 |
|
537 |
|
538 |
|
539 |
### Framework Versions
|
540 |
- Python: 3.10.14
|
541 |
-
- Sentence Transformers: 3.0
|
542 |
- Transformers: 4.44.2
|
543 |
- PyTorch: 2.4.1+cu121
|
544 |
- Accelerate: 0.34.2
|
|
|
1 |
---
|
2 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
|
|
|
|
3 |
library_name: sentence-transformers
|
4 |
metrics:
|
5 |
- cosine_accuracy
|
|
|
43 |
- sentence-similarity
|
44 |
- feature-extraction
|
45 |
- generated_from_trainer
|
46 |
+
- dataset_size:965
|
47 |
- loss:CoSENTLoss
|
48 |
widget:
|
49 |
+
- source_sentence: To test the spell
|
50 |
sentences:
|
51 |
+
- Are you a magic spell user?
|
52 |
+
- What happened?
|
53 |
+
- Who is your daughter?
|
54 |
+
- source_sentence: Someone used a magic spell to change the flower into a plush
|
55 |
sentences:
|
56 |
+
- Have you been to a well?
|
57 |
+
- These Bottles.
|
58 |
+
- Magic is on the plush
|
59 |
+
- source_sentence: What spells can the villagers use?
|
60 |
sentences:
|
61 |
+
- Jack
|
62 |
+
- Do you know a mage who changes shape of material?
|
63 |
+
- These lillies are important.
|
64 |
+
- source_sentence: Why are you pressured?
|
65 |
sentences:
|
66 |
+
- A picture.
|
67 |
+
- Sophie why are you pressured?
|
68 |
+
- Change the look of object
|
69 |
+
- source_sentence: I found lillies.
|
70 |
sentences:
|
71 |
+
- Someone who can change item
|
72 |
+
- These lillies.
|
73 |
+
- Are you plotting?
|
74 |
model-index:
|
75 |
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
76 |
results:
|
|
|
78 |
type: binary-classification
|
79 |
name: Binary Classification
|
80 |
dataset:
|
81 |
+
name: custom arc semantics data en
|
82 |
+
type: custom-arc-semantics-data-en
|
83 |
metrics:
|
84 |
- type: cosine_accuracy
|
85 |
+
value: 0.8756476683937824
|
86 |
name: Cosine Accuracy
|
87 |
- type: cosine_accuracy_threshold
|
88 |
+
value: 0.3563339114189148
|
89 |
name: Cosine Accuracy Threshold
|
90 |
- type: cosine_f1
|
91 |
+
value: 0.8928571428571428
|
92 |
name: Cosine F1
|
93 |
- type: cosine_f1_threshold
|
94 |
+
value: 0.3563339114189148
|
95 |
name: Cosine F1 Threshold
|
96 |
- type: cosine_precision
|
97 |
+
value: 0.847457627118644
|
98 |
name: Cosine Precision
|
99 |
- type: cosine_recall
|
100 |
+
value: 0.9433962264150944
|
101 |
name: Cosine Recall
|
102 |
- type: cosine_ap
|
103 |
+
value: 0.93108620584637
|
104 |
name: Cosine Ap
|
105 |
- type: dot_accuracy
|
106 |
+
value: 0.8756476683937824
|
107 |
name: Dot Accuracy
|
108 |
- type: dot_accuracy_threshold
|
109 |
+
value: 0.3563339114189148
|
110 |
name: Dot Accuracy Threshold
|
111 |
- type: dot_f1
|
112 |
+
value: 0.8928571428571428
|
113 |
name: Dot F1
|
114 |
- type: dot_f1_threshold
|
115 |
+
value: 0.3563339114189148
|
116 |
name: Dot F1 Threshold
|
117 |
- type: dot_precision
|
118 |
+
value: 0.847457627118644
|
119 |
name: Dot Precision
|
120 |
- type: dot_recall
|
121 |
+
value: 0.9433962264150944
|
122 |
name: Dot Recall
|
123 |
- type: dot_ap
|
124 |
+
value: 0.93108620584637
|
125 |
name: Dot Ap
|
126 |
- type: manhattan_accuracy
|
127 |
+
value: 0.8756476683937824
|
128 |
name: Manhattan Accuracy
|
129 |
- type: manhattan_accuracy_threshold
|
130 |
+
value: 17.202983856201172
|
131 |
name: Manhattan Accuracy Threshold
|
132 |
- type: manhattan_f1
|
133 |
+
value: 0.8909090909090909
|
134 |
name: Manhattan F1
|
135 |
- type: manhattan_f1_threshold
|
136 |
+
value: 17.202983856201172
|
137 |
name: Manhattan F1 Threshold
|
138 |
- type: manhattan_precision
|
139 |
+
value: 0.8596491228070176
|
140 |
name: Manhattan Precision
|
141 |
- type: manhattan_recall
|
142 |
+
value: 0.9245283018867925
|
143 |
name: Manhattan Recall
|
144 |
- type: manhattan_ap
|
145 |
+
value: 0.9302290531425504
|
146 |
name: Manhattan Ap
|
147 |
- type: euclidean_accuracy
|
148 |
+
value: 0.8756476683937824
|
149 |
name: Euclidean Accuracy
|
150 |
- type: euclidean_accuracy_threshold
|
151 |
+
value: 1.1346065998077393
|
152 |
name: Euclidean Accuracy Threshold
|
153 |
- type: euclidean_f1
|
154 |
+
value: 0.8928571428571428
|
155 |
name: Euclidean F1
|
156 |
- type: euclidean_f1_threshold
|
157 |
+
value: 1.1346065998077393
|
158 |
name: Euclidean F1 Threshold
|
159 |
- type: euclidean_precision
|
160 |
+
value: 0.847457627118644
|
161 |
name: Euclidean Precision
|
162 |
- type: euclidean_recall
|
163 |
+
value: 0.9433962264150944
|
164 |
name: Euclidean Recall
|
165 |
- type: euclidean_ap
|
166 |
+
value: 0.93108620584637
|
167 |
name: Euclidean Ap
|
168 |
- type: max_accuracy
|
169 |
+
value: 0.8756476683937824
|
170 |
name: Max Accuracy
|
171 |
- type: max_accuracy_threshold
|
172 |
+
value: 17.202983856201172
|
173 |
name: Max Accuracy Threshold
|
174 |
- type: max_f1
|
175 |
+
value: 0.8928571428571428
|
176 |
name: Max F1
|
177 |
- type: max_f1_threshold
|
178 |
+
value: 17.202983856201172
|
179 |
name: Max F1 Threshold
|
180 |
- type: max_precision
|
181 |
+
value: 0.8596491228070176
|
182 |
name: Max Precision
|
183 |
- type: max_recall
|
184 |
+
value: 0.9433962264150944
|
185 |
name: Max Recall
|
186 |
- type: max_ap
|
187 |
+
value: 0.93108620584637
|
188 |
name: Max Ap
|
189 |
---
|
190 |
|
191 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
192 |
|
193 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
194 |
|
195 |
## Model Details
|
196 |
|
|
|
200 |
- **Maximum Sequence Length:** 256 tokens
|
201 |
- **Output Dimensionality:** 384 tokens
|
202 |
- **Similarity Function:** Cosine Similarity
|
203 |
+
- **Training Dataset:**
|
204 |
+
- csv
|
205 |
<!-- - **Language:** Unknown -->
|
206 |
<!-- - **License:** Unknown -->
|
207 |
|
|
|
239 |
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc")
|
240 |
# Run inference
|
241 |
sentences = [
|
242 |
+
'I found lillies.',
|
243 |
+
'These lillies.',
|
244 |
+
'Are you plotting?',
|
245 |
]
|
246 |
embeddings = model.encode(sentences)
|
247 |
print(embeddings.shape)
|
|
|
282 |
### Metrics
|
283 |
|
284 |
#### Binary Classification
|
285 |
+
* Dataset: `custom-arc-semantics-data-en`
|
286 |
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
287 |
|
288 |
| Metric | Value |
|
289 |
|:-----------------------------|:-----------|
|
290 |
+
| cosine_accuracy | 0.8756 |
|
291 |
+
| cosine_accuracy_threshold | 0.3563 |
|
292 |
+
| cosine_f1 | 0.8929 |
|
293 |
+
| cosine_f1_threshold | 0.3563 |
|
294 |
+
| cosine_precision | 0.8475 |
|
295 |
+
| cosine_recall | 0.9434 |
|
296 |
+
| cosine_ap | 0.9311 |
|
297 |
+
| dot_accuracy | 0.8756 |
|
298 |
+
| dot_accuracy_threshold | 0.3563 |
|
299 |
+
| dot_f1 | 0.8929 |
|
300 |
+
| dot_f1_threshold | 0.3563 |
|
301 |
+
| dot_precision | 0.8475 |
|
302 |
+
| dot_recall | 0.9434 |
|
303 |
+
| dot_ap | 0.9311 |
|
304 |
+
| manhattan_accuracy | 0.8756 |
|
305 |
+
| manhattan_accuracy_threshold | 17.203 |
|
306 |
+
| manhattan_f1 | 0.8909 |
|
307 |
+
| manhattan_f1_threshold | 17.203 |
|
308 |
+
| manhattan_precision | 0.8596 |
|
309 |
+
| manhattan_recall | 0.9245 |
|
310 |
+
| manhattan_ap | 0.9302 |
|
311 |
+
| euclidean_accuracy | 0.8756 |
|
312 |
+
| euclidean_accuracy_threshold | 1.1346 |
|
313 |
+
| euclidean_f1 | 0.8929 |
|
314 |
+
| euclidean_f1_threshold | 1.1346 |
|
315 |
+
| euclidean_precision | 0.8475 |
|
316 |
+
| euclidean_recall | 0.9434 |
|
317 |
+
| euclidean_ap | 0.9311 |
|
318 |
+
| max_accuracy | 0.8756 |
|
319 |
+
| max_accuracy_threshold | 17.203 |
|
320 |
+
| max_f1 | 0.8929 |
|
321 |
+
| max_f1_threshold | 17.203 |
|
322 |
+
| max_precision | 0.8596 |
|
323 |
+
| max_recall | 0.9434 |
|
324 |
+
| **max_ap** | **0.9311** |
|
325 |
|
326 |
<!--
|
327 |
## Bias, Risks and Limitations
|
|
|
339 |
|
340 |
### Training Dataset
|
341 |
|
342 |
+
#### csv
|
343 |
|
344 |
+
* Dataset: csv
|
345 |
+
* Size: 965 training samples
|
346 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
347 |
+
* Approximate statistics based on the first 965 samples:
|
348 |
| | text1 | text2 | label |
|
349 |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
350 |
| type | string | string | int |
|
351 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.3 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.18 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~42.10%</li><li>1: ~57.90%</li></ul> |
|
352 |
* Samples:
|
353 |
+
| text1 | text2 | label |
|
354 |
+
|:------------------------------------------|:--------------------------------|:---------------|
|
355 |
+
| <code>What did you eat last night?</code> | <code>What did you cook?</code> | <code>1</code> |
|
356 |
+
| <code>I don't like you</code> | <code>I hate you</code> | <code>1</code> |
|
357 |
+
| <code>Tell me about theier magic</code> | <code>Elder</code> | <code>0</code> |
|
358 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
359 |
```json
|
360 |
{
|
|
|
365 |
|
366 |
### Evaluation Dataset
|
367 |
|
368 |
+
#### csv
|
|
|
369 |
|
370 |
+
* Dataset: csv
|
371 |
+
* Size: 965 evaluation samples
|
372 |
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
|
373 |
+
* Approximate statistics based on the first 965 samples:
|
374 |
| | text1 | text2 | label |
|
375 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
376 |
| type | string | string | int |
|
377 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.14 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.93 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~45.08%</li><li>1: ~54.92%</li></ul> |
|
378 |
* Samples:
|
379 |
+
| text1 | text2 | label |
|
380 |
+
|:-------------------------------------------------|:-----------------------------------|:---------------|
|
381 |
+
| <code>To test the spell</code> | <code>Who is your daughter?</code> | <code>0</code> |
|
382 |
+
| <code>I think this painting is important.</code> | <code>A book.</code> | <code>0</code> |
|
383 |
+
| <code>Is the scarf in the fireplace?</code> | <code>Candle</code> | <code>0</code> |
|
384 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
385 |
```json
|
386 |
{
|
|
|
394 |
|
395 |
- `eval_strategy`: epoch
|
396 |
- `learning_rate`: 2e-05
|
397 |
+
- `num_train_epochs`: 2
|
398 |
- `warmup_ratio`: 0.1
|
399 |
- `fp16`: True
|
400 |
- `batch_sampler`: no_duplicates
|
|
|
419 |
- `adam_beta2`: 0.999
|
420 |
- `adam_epsilon`: 1e-08
|
421 |
- `max_grad_norm`: 1.0
|
422 |
+
- `num_train_epochs`: 2
|
423 |
- `max_steps`: -1
|
424 |
- `lr_scheduler_type`: linear
|
425 |
- `lr_scheduler_kwargs`: {}
|
|
|
517 |
</details>
|
518 |
|
519 |
### Training Logs
|
520 |
+
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data-en_max_ap |
|
521 |
+
|:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
|
522 |
+
| None | 0 | - | - | 0.8832 |
|
523 |
+
| 1.0 | 97 | 2.266 | 2.0829 | 0.9252 |
|
524 |
+
| 2.0 | 194 | 1.0666 | 1.8713 | 0.9311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
|
526 |
|
527 |
### Framework Versions
|
528 |
- Python: 3.10.14
|
529 |
+
- Sentence Transformers: 3.1.0
|
530 |
- Transformers: 4.44.2
|
531 |
- PyTorch: 2.4.1+cu121
|
532 |
- Accelerate: 0.34.2
|
config_sentence_transformers.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "3.0
|
4 |
"transformers": "4.44.2",
|
5 |
"pytorch": "2.4.1+cu121"
|
6 |
},
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
"transformers": "4.44.2",
|
5 |
"pytorch": "2.4.1+cu121"
|
6 |
},
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2380e8cf990e70e06384ac349d98edb264c17102e09a5f6f7cbdd00d64bd236c
|
3 |
size 90864192
|