LeoChiuu commited on
Commit
bf9d6aa
1 Parent(s): 3a99645

Add new SentenceTransformer model.

Browse files
Files changed (3) hide show
  1. README.md +128 -140
  2. config_sentence_transformers.json +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,7 +1,5 @@
1
  ---
2
  base_model: sentence-transformers/all-MiniLM-L6-v2
3
- datasets: []
4
- language: []
5
  library_name: sentence-transformers
6
  metrics:
7
  - cosine_accuracy
@@ -45,34 +43,34 @@ tags:
45
  - sentence-similarity
46
  - feature-extraction
47
  - generated_from_trainer
48
- - dataset_size:560
49
  - loss:CoSENTLoss
50
  widget:
51
- - source_sentence: Let's search inside
52
  sentences:
53
- - Stuffed animal
54
- - Let's look inside
55
- - What is worse?
56
- - source_sentence: I want a torch
57
  sentences:
58
- - What do you think of Spike
59
- - Actually I want a torch
60
- - Why candle?
61
- - source_sentence: Magic trace
62
  sentences:
63
- - A sword.
64
- - ' Why is he so tiny?'
65
- - 'The flower is changed into flower. '
66
- - source_sentence: Did you use illusion?
67
  sentences:
68
- - Do you use illusion?
69
- - You are a cat?
70
- - It's Toby
71
- - source_sentence: Do you see your scarf in the watering can?
72
  sentences:
73
- - What is the Weeping Tree?
74
- - Are these your footprints?
75
- - Magic user
76
  model-index:
77
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
78
  results:
@@ -80,119 +78,119 @@ model-index:
80
  type: binary-classification
81
  name: Binary Classification
82
  dataset:
83
- name: custom arc semantics data
84
- type: custom-arc-semantics-data
85
  metrics:
86
  - type: cosine_accuracy
87
- value: 0.9285714285714286
88
  name: Cosine Accuracy
89
  - type: cosine_accuracy_threshold
90
- value: 0.42927420139312744
91
  name: Cosine Accuracy Threshold
92
  - type: cosine_f1
93
- value: 0.9425287356321839
94
  name: Cosine F1
95
  - type: cosine_f1_threshold
96
- value: 0.2269928753376007
97
  name: Cosine F1 Threshold
98
  - type: cosine_precision
99
- value: 0.9111111111111111
100
  name: Cosine Precision
101
  - type: cosine_recall
102
- value: 0.9761904761904762
103
  name: Cosine Recall
104
  - type: cosine_ap
105
- value: 0.9720863676601571
106
  name: Cosine Ap
107
  - type: dot_accuracy
108
- value: 0.9285714285714286
109
  name: Dot Accuracy
110
  - type: dot_accuracy_threshold
111
- value: 0.42927438020706177
112
  name: Dot Accuracy Threshold
113
  - type: dot_f1
114
- value: 0.9425287356321839
115
  name: Dot F1
116
  - type: dot_f1_threshold
117
- value: 0.22699296474456787
118
  name: Dot F1 Threshold
119
  - type: dot_precision
120
- value: 0.9111111111111111
121
  name: Dot Precision
122
  - type: dot_recall
123
- value: 0.9761904761904762
124
  name: Dot Recall
125
  - type: dot_ap
126
- value: 0.9720863676601571
127
  name: Dot Ap
128
  - type: manhattan_accuracy
129
- value: 0.9285714285714286
130
  name: Manhattan Accuracy
131
  - type: manhattan_accuracy_threshold
132
- value: 16.630834579467773
133
  name: Manhattan Accuracy Threshold
134
  - type: manhattan_f1
135
- value: 0.9431818181818182
136
  name: Manhattan F1
137
  - type: manhattan_f1_threshold
138
- value: 19.740108489990234
139
  name: Manhattan F1 Threshold
140
  - type: manhattan_precision
141
- value: 0.9021739130434783
142
  name: Manhattan Precision
143
  - type: manhattan_recall
144
- value: 0.9880952380952381
145
  name: Manhattan Recall
146
  - type: manhattan_ap
147
- value: 0.9728353486982702
148
  name: Manhattan Ap
149
  - type: euclidean_accuracy
150
- value: 0.9285714285714286
151
  name: Euclidean Accuracy
152
  - type: euclidean_accuracy_threshold
153
- value: 1.068155288696289
154
  name: Euclidean Accuracy Threshold
155
  - type: euclidean_f1
156
- value: 0.9425287356321839
157
  name: Euclidean F1
158
  - type: euclidean_f1_threshold
159
- value: 1.2433418035507202
160
  name: Euclidean F1 Threshold
161
  - type: euclidean_precision
162
- value: 0.9111111111111111
163
  name: Euclidean Precision
164
  - type: euclidean_recall
165
- value: 0.9761904761904762
166
  name: Euclidean Recall
167
  - type: euclidean_ap
168
- value: 0.9720863676601571
169
  name: Euclidean Ap
170
  - type: max_accuracy
171
- value: 0.9285714285714286
172
  name: Max Accuracy
173
  - type: max_accuracy_threshold
174
- value: 16.630834579467773
175
  name: Max Accuracy Threshold
176
  - type: max_f1
177
- value: 0.9431818181818182
178
  name: Max F1
179
  - type: max_f1_threshold
180
- value: 19.740108489990234
181
  name: Max F1 Threshold
182
  - type: max_precision
183
- value: 0.9111111111111111
184
  name: Max Precision
185
  - type: max_recall
186
- value: 0.9880952380952381
187
  name: Max Recall
188
  - type: max_ap
189
- value: 0.9728353486982702
190
  name: Max Ap
191
  ---
192
 
193
  # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
194
 
195
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
196
 
197
  ## Model Details
198
 
@@ -202,7 +200,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
202
  - **Maximum Sequence Length:** 256 tokens
203
  - **Output Dimensionality:** 384 tokens
204
  - **Similarity Function:** Cosine Similarity
205
- <!-- - **Training Dataset:** Unknown -->
 
206
  <!-- - **Language:** Unknown -->
207
  <!-- - **License:** Unknown -->
208
 
@@ -240,9 +239,9 @@ from sentence_transformers import SentenceTransformer
240
  model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc")
241
  # Run inference
242
  sentences = [
243
- 'Do you see your scarf in the watering can?',
244
- 'Are these your footprints?',
245
- 'Magic user',
246
  ]
247
  embeddings = model.encode(sentences)
248
  print(embeddings.shape)
@@ -283,46 +282,46 @@ You can finetune this model on your own dataset.
283
  ### Metrics
284
 
285
  #### Binary Classification
286
- * Dataset: `custom-arc-semantics-data`
287
  * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
288
 
289
  | Metric | Value |
290
  |:-----------------------------|:-----------|
291
- | cosine_accuracy | 0.9286 |
292
- | cosine_accuracy_threshold | 0.4293 |
293
- | cosine_f1 | 0.9425 |
294
- | cosine_f1_threshold | 0.227 |
295
- | cosine_precision | 0.9111 |
296
- | cosine_recall | 0.9762 |
297
- | cosine_ap | 0.9721 |
298
- | dot_accuracy | 0.9286 |
299
- | dot_accuracy_threshold | 0.4293 |
300
- | dot_f1 | 0.9425 |
301
- | dot_f1_threshold | 0.227 |
302
- | dot_precision | 0.9111 |
303
- | dot_recall | 0.9762 |
304
- | dot_ap | 0.9721 |
305
- | manhattan_accuracy | 0.9286 |
306
- | manhattan_accuracy_threshold | 16.6308 |
307
- | manhattan_f1 | 0.9432 |
308
- | manhattan_f1_threshold | 19.7401 |
309
- | manhattan_precision | 0.9022 |
310
- | manhattan_recall | 0.9881 |
311
- | manhattan_ap | 0.9728 |
312
- | euclidean_accuracy | 0.9286 |
313
- | euclidean_accuracy_threshold | 1.0682 |
314
- | euclidean_f1 | 0.9425 |
315
- | euclidean_f1_threshold | 1.2433 |
316
- | euclidean_precision | 0.9111 |
317
- | euclidean_recall | 0.9762 |
318
- | euclidean_ap | 0.9721 |
319
- | max_accuracy | 0.9286 |
320
- | max_accuracy_threshold | 16.6308 |
321
- | max_f1 | 0.9432 |
322
- | max_f1_threshold | 19.7401 |
323
- | max_precision | 0.9111 |
324
- | max_recall | 0.9881 |
325
- | **max_ap** | **0.9728** |
326
 
327
  <!--
328
  ## Bias, Risks and Limitations
@@ -340,22 +339,22 @@ You can finetune this model on your own dataset.
340
 
341
  ### Training Dataset
342
 
343
- #### Unnamed Dataset
344
 
345
-
346
- * Size: 560 training samples
347
  * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
348
- * Approximate statistics based on the first 1000 samples:
349
  | | text1 | text2 | label |
350
  |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
351
  | type | string | string | int |
352
- | details | <ul><li>min: 3 tokens</li><li>mean: 7.2 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.26 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~36.07%</li><li>1: ~63.93%</li></ul> |
353
  * Samples:
354
- | text1 | text2 | label |
355
- |:-----------------------------------------------------|:--------------------------------------------------------------------------|:---------------|
356
- | <code>When it was dinner</code> | <code>Dinner time</code> | <code>1</code> |
357
- | <code>Did you cook chicken noodle last night?</code> | <code>Did you make chicken noodle for dinner?</code> | <code>1</code> |
358
- | <code>Someone who can change item</code> | <code>Someone who uses magic that turns something into something. </code> | <code>1</code> |
359
  * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
360
  ```json
361
  {
@@ -366,22 +365,22 @@ You can finetune this model on your own dataset.
366
 
367
  ### Evaluation Dataset
368
 
369
- #### Unnamed Dataset
370
-
371
 
372
- * Size: 140 evaluation samples
 
373
  * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
374
- * Approximate statistics based on the first 1000 samples:
375
  | | text1 | text2 | label |
376
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
377
  | type | string | string | int |
378
- | details | <ul><li>min: 3 tokens</li><li>mean: 6.99 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.29 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~40.00%</li><li>1: ~60.00%</li></ul> |
379
  * Samples:
380
- | text1 | text2 | label |
381
- |:-----------------------------------------|:-----------------------------------------|:---------------|
382
- | <code>Let's check inside</code> | <code>Let's search inside</code> | <code>1</code> |
383
- | <code>Sohpie, are you okay?</code> | <code>Sophie Are you pressured?</code> | <code>0</code> |
384
- | <code>This wine glass is related.</code> | <code>This sword looks important.</code> | <code>0</code> |
385
  * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
386
  ```json
387
  {
@@ -395,7 +394,7 @@ You can finetune this model on your own dataset.
395
 
396
  - `eval_strategy`: epoch
397
  - `learning_rate`: 2e-05
398
- - `num_train_epochs`: 13
399
  - `warmup_ratio`: 0.1
400
  - `fp16`: True
401
  - `batch_sampler`: no_duplicates
@@ -420,7 +419,7 @@ You can finetune this model on your own dataset.
420
  - `adam_beta2`: 0.999
421
  - `adam_epsilon`: 1e-08
422
  - `max_grad_norm`: 1.0
423
- - `num_train_epochs`: 13
424
  - `max_steps`: -1
425
  - `lr_scheduler_type`: linear
426
  - `lr_scheduler_kwargs`: {}
@@ -518,27 +517,16 @@ You can finetune this model on your own dataset.
518
  </details>
519
 
520
  ### Training Logs
521
- | Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
522
- |:-----:|:----:|:-------------:|:------:|:--------------------------------:|
523
- | None | 0 | - | - | 0.9254 |
524
- | 1.0 | 70 | 2.9684 | 1.4087 | 0.9425 |
525
- | 2.0 | 140 | 1.4461 | 1.0942 | 0.9629 |
526
- | 3.0 | 210 | 0.6005 | 0.8398 | 0.9680 |
527
- | 4.0 | 280 | 0.3021 | 0.7577 | 0.9703 |
528
- | 5.0 | 350 | 0.2412 | 0.7216 | 0.9715 |
529
- | 6.0 | 420 | 0.1816 | 0.7538 | 0.9722 |
530
- | 7.0 | 490 | 0.1512 | 0.8049 | 0.9726 |
531
- | 8.0 | 560 | 0.1208 | 0.7602 | 0.9726 |
532
- | 9.0 | 630 | 0.0915 | 0.7286 | 0.9729 |
533
- | 10.0 | 700 | 0.0553 | 0.7072 | 0.9729 |
534
- | 11.0 | 770 | 0.0716 | 0.6984 | 0.9730 |
535
- | 12.0 | 840 | 0.0297 | 0.7063 | 0.9725 |
536
- | 13.0 | 910 | 0.0462 | 0.6997 | 0.9728 |
537
 
538
 
539
  ### Framework Versions
540
  - Python: 3.10.14
541
- - Sentence Transformers: 3.0.1
542
  - Transformers: 4.44.2
543
  - PyTorch: 2.4.1+cu121
544
  - Accelerate: 0.34.2
 
1
  ---
2
  base_model: sentence-transformers/all-MiniLM-L6-v2
 
 
3
  library_name: sentence-transformers
4
  metrics:
5
  - cosine_accuracy
 
43
  - sentence-similarity
44
  - feature-extraction
45
  - generated_from_trainer
46
+ - dataset_size:965
47
  - loss:CoSENTLoss
48
  widget:
49
+ - source_sentence: To test the spell
50
  sentences:
51
+ - Are you a magic spell user?
52
+ - What happened?
53
+ - Who is your daughter?
54
+ - source_sentence: Someone used a magic spell to change the flower into a plush
55
  sentences:
56
+ - Have you been to a well?
57
+ - These Bottles.
58
+ - Magic is on the plush
59
+ - source_sentence: What spells can the villagers use?
60
  sentences:
61
+ - Jack
62
+ - Do you know a mage who changes shape of material?
63
+ - These lillies are important.
64
+ - source_sentence: Why are you pressured?
65
  sentences:
66
+ - A picture.
67
+ - Sophie why are you pressured?
68
+ - Change the look of object
69
+ - source_sentence: I found lillies.
70
  sentences:
71
+ - Someone who can change item
72
+ - These lillies.
73
+ - Are you plotting?
74
  model-index:
75
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
76
  results:
 
78
  type: binary-classification
79
  name: Binary Classification
80
  dataset:
81
+ name: custom arc semantics data en
82
+ type: custom-arc-semantics-data-en
83
  metrics:
84
  - type: cosine_accuracy
85
+ value: 0.8756476683937824
86
  name: Cosine Accuracy
87
  - type: cosine_accuracy_threshold
88
+ value: 0.3563339114189148
89
  name: Cosine Accuracy Threshold
90
  - type: cosine_f1
91
+ value: 0.8928571428571428
92
  name: Cosine F1
93
  - type: cosine_f1_threshold
94
+ value: 0.3563339114189148
95
  name: Cosine F1 Threshold
96
  - type: cosine_precision
97
+ value: 0.847457627118644
98
  name: Cosine Precision
99
  - type: cosine_recall
100
+ value: 0.9433962264150944
101
  name: Cosine Recall
102
  - type: cosine_ap
103
+ value: 0.93108620584637
104
  name: Cosine Ap
105
  - type: dot_accuracy
106
+ value: 0.8756476683937824
107
  name: Dot Accuracy
108
  - type: dot_accuracy_threshold
109
+ value: 0.3563339114189148
110
  name: Dot Accuracy Threshold
111
  - type: dot_f1
112
+ value: 0.8928571428571428
113
  name: Dot F1
114
  - type: dot_f1_threshold
115
+ value: 0.3563339114189148
116
  name: Dot F1 Threshold
117
  - type: dot_precision
118
+ value: 0.847457627118644
119
  name: Dot Precision
120
  - type: dot_recall
121
+ value: 0.9433962264150944
122
  name: Dot Recall
123
  - type: dot_ap
124
+ value: 0.93108620584637
125
  name: Dot Ap
126
  - type: manhattan_accuracy
127
+ value: 0.8756476683937824
128
  name: Manhattan Accuracy
129
  - type: manhattan_accuracy_threshold
130
+ value: 17.202983856201172
131
  name: Manhattan Accuracy Threshold
132
  - type: manhattan_f1
133
+ value: 0.8909090909090909
134
  name: Manhattan F1
135
  - type: manhattan_f1_threshold
136
+ value: 17.202983856201172
137
  name: Manhattan F1 Threshold
138
  - type: manhattan_precision
139
+ value: 0.8596491228070176
140
  name: Manhattan Precision
141
  - type: manhattan_recall
142
+ value: 0.9245283018867925
143
  name: Manhattan Recall
144
  - type: manhattan_ap
145
+ value: 0.9302290531425504
146
  name: Manhattan Ap
147
  - type: euclidean_accuracy
148
+ value: 0.8756476683937824
149
  name: Euclidean Accuracy
150
  - type: euclidean_accuracy_threshold
151
+ value: 1.1346065998077393
152
  name: Euclidean Accuracy Threshold
153
  - type: euclidean_f1
154
+ value: 0.8928571428571428
155
  name: Euclidean F1
156
  - type: euclidean_f1_threshold
157
+ value: 1.1346065998077393
158
  name: Euclidean F1 Threshold
159
  - type: euclidean_precision
160
+ value: 0.847457627118644
161
  name: Euclidean Precision
162
  - type: euclidean_recall
163
+ value: 0.9433962264150944
164
  name: Euclidean Recall
165
  - type: euclidean_ap
166
+ value: 0.93108620584637
167
  name: Euclidean Ap
168
  - type: max_accuracy
169
+ value: 0.8756476683937824
170
  name: Max Accuracy
171
  - type: max_accuracy_threshold
172
+ value: 17.202983856201172
173
  name: Max Accuracy Threshold
174
  - type: max_f1
175
+ value: 0.8928571428571428
176
  name: Max F1
177
  - type: max_f1_threshold
178
+ value: 17.202983856201172
179
  name: Max F1 Threshold
180
  - type: max_precision
181
+ value: 0.8596491228070176
182
  name: Max Precision
183
  - type: max_recall
184
+ value: 0.9433962264150944
185
  name: Max Recall
186
  - type: max_ap
187
+ value: 0.93108620584637
188
  name: Max Ap
189
  ---
190
 
191
  # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
192
 
193
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
194
 
195
  ## Model Details
196
 
 
200
  - **Maximum Sequence Length:** 256 tokens
201
  - **Output Dimensionality:** 384 tokens
202
  - **Similarity Function:** Cosine Similarity
203
+ - **Training Dataset:**
204
+ - csv
205
  <!-- - **Language:** Unknown -->
206
  <!-- - **License:** Unknown -->
207
 
 
239
  model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2-arc")
240
  # Run inference
241
  sentences = [
242
+ 'I found lillies.',
243
+ 'These lillies.',
244
+ 'Are you plotting?',
245
  ]
246
  embeddings = model.encode(sentences)
247
  print(embeddings.shape)
 
282
  ### Metrics
283
 
284
  #### Binary Classification
285
+ * Dataset: `custom-arc-semantics-data-en`
286
  * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
287
 
288
  | Metric | Value |
289
  |:-----------------------------|:-----------|
290
+ | cosine_accuracy | 0.8756 |
291
+ | cosine_accuracy_threshold | 0.3563 |
292
+ | cosine_f1 | 0.8929 |
293
+ | cosine_f1_threshold | 0.3563 |
294
+ | cosine_precision | 0.8475 |
295
+ | cosine_recall | 0.9434 |
296
+ | cosine_ap | 0.9311 |
297
+ | dot_accuracy | 0.8756 |
298
+ | dot_accuracy_threshold | 0.3563 |
299
+ | dot_f1 | 0.8929 |
300
+ | dot_f1_threshold | 0.3563 |
301
+ | dot_precision | 0.8475 |
302
+ | dot_recall | 0.9434 |
303
+ | dot_ap | 0.9311 |
304
+ | manhattan_accuracy | 0.8756 |
305
+ | manhattan_accuracy_threshold | 17.203 |
306
+ | manhattan_f1 | 0.8909 |
307
+ | manhattan_f1_threshold | 17.203 |
308
+ | manhattan_precision | 0.8596 |
309
+ | manhattan_recall | 0.9245 |
310
+ | manhattan_ap | 0.9302 |
311
+ | euclidean_accuracy | 0.8756 |
312
+ | euclidean_accuracy_threshold | 1.1346 |
313
+ | euclidean_f1 | 0.8929 |
314
+ | euclidean_f1_threshold | 1.1346 |
315
+ | euclidean_precision | 0.8475 |
316
+ | euclidean_recall | 0.9434 |
317
+ | euclidean_ap | 0.9311 |
318
+ | max_accuracy | 0.8756 |
319
+ | max_accuracy_threshold | 17.203 |
320
+ | max_f1 | 0.8929 |
321
+ | max_f1_threshold | 17.203 |
322
+ | max_precision | 0.8596 |
323
+ | max_recall | 0.9434 |
324
+ | **max_ap** | **0.9311** |
325
 
326
  <!--
327
  ## Bias, Risks and Limitations
 
339
 
340
  ### Training Dataset
341
 
342
+ #### csv
343
 
344
+ * Dataset: csv
345
+ * Size: 965 training samples
346
  * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
347
+ * Approximate statistics based on the first 965 samples:
348
  | | text1 | text2 | label |
349
  |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
350
  | type | string | string | int |
351
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.3 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.18 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~42.10%</li><li>1: ~57.90%</li></ul> |
352
  * Samples:
353
+ | text1 | text2 | label |
354
+ |:------------------------------------------|:--------------------------------|:---------------|
355
+ | <code>What did you eat last night?</code> | <code>What did you cook?</code> | <code>1</code> |
356
+ | <code>I don't like you</code> | <code>I hate you</code> | <code>1</code> |
357
+ | <code>Tell me about theier magic</code> | <code>Elder</code> | <code>0</code> |
358
  * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
359
  ```json
360
  {
 
365
 
366
  ### Evaluation Dataset
367
 
368
+ #### csv
 
369
 
370
+ * Dataset: csv
371
+ * Size: 965 evaluation samples
372
  * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
373
+ * Approximate statistics based on the first 965 samples:
374
  | | text1 | text2 | label |
375
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
376
  | type | string | string | int |
377
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.14 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.93 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~45.08%</li><li>1: ~54.92%</li></ul> |
378
  * Samples:
379
+ | text1 | text2 | label |
380
+ |:-------------------------------------------------|:-----------------------------------|:---------------|
381
+ | <code>To test the spell</code> | <code>Who is your daughter?</code> | <code>0</code> |
382
+ | <code>I think this painting is important.</code> | <code>A book.</code> | <code>0</code> |
383
+ | <code>Is the scarf in the fireplace?</code> | <code>Candle</code> | <code>0</code> |
384
  * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
385
  ```json
386
  {
 
394
 
395
  - `eval_strategy`: epoch
396
  - `learning_rate`: 2e-05
397
+ - `num_train_epochs`: 2
398
  - `warmup_ratio`: 0.1
399
  - `fp16`: True
400
  - `batch_sampler`: no_duplicates
 
419
  - `adam_beta2`: 0.999
420
  - `adam_epsilon`: 1e-08
421
  - `max_grad_norm`: 1.0
422
+ - `num_train_epochs`: 2
423
  - `max_steps`: -1
424
  - `lr_scheduler_type`: linear
425
  - `lr_scheduler_kwargs`: {}
 
517
  </details>
518
 
519
  ### Training Logs
520
+ | Epoch | Step | Training Loss | loss | custom-arc-semantics-data-en_max_ap |
521
+ |:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
522
+ | None | 0 | - | - | 0.8832 |
523
+ | 1.0 | 97 | 2.266 | 2.0829 | 0.9252 |
524
+ | 2.0 | 194 | 1.0666 | 1.8713 | 0.9311 |
 
 
 
 
 
 
 
 
 
 
 
525
 
526
 
527
  ### Framework Versions
528
  - Python: 3.10.14
529
+ - Sentence Transformers: 3.1.0
530
  - Transformers: 4.44.2
531
  - PyTorch: 2.4.1+cu121
532
  - Accelerate: 0.34.2
config_sentence_transformers.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "__version__": {
3
- "sentence_transformers": "3.0.1",
4
  "transformers": "4.44.2",
5
  "pytorch": "2.4.1+cu121"
6
  },
 
1
  {
2
  "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
  "transformers": "4.44.2",
5
  "pytorch": "2.4.1+cu121"
6
  },
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d9ab6b7472780e4b9271e02f535d125c33cef1b145ab2f8d3135ed97c72aea5
3
  size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2380e8cf990e70e06384ac349d98edb264c17102e09a5f6f7cbdd00d64bd236c
3
  size 90864192