all-MiniLM-L6-v2 / README.md
LeoChiuu's picture
Add new SentenceTransformer model.
fa823d5 verified
metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:560
  - loss:CoSENTLoss
widget:
  - source_sentence: Let's search inside
    sentences:
      - Stuffed animal
      - Let's look inside
      - What is worse?
  - source_sentence: I want a torch
    sentences:
      - What do you think of Spike
      - Actually I want a torch
      - Why candle?
  - source_sentence: Magic trace
    sentences:
      - A sword.
      - ' Why is he so tiny?'
      - 'The flower is changed into flower. '
  - source_sentence: Did you use illusion?
    sentences:
      - Do you use illusion?
      - You are a cat?
      - It's Toby
  - source_sentence: Do you see your scarf in the watering can?
    sentences:
      - What is the Weeping Tree?
      - Are these your footprints?
      - Magic user
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: custom arc semantics data
          type: custom-arc-semantics-data
        metrics:
          - type: cosine_accuracy
            value: 0.9285714285714286
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.42927420139312744
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9425287356321839
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.2269928753376007
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9111111111111111
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9761904761904762
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9720863676601571
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9285714285714286
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.42927438020706177
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9425287356321839
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.22699296474456787
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.9111111111111111
            name: Dot Precision
          - type: dot_recall
            value: 0.9761904761904762
            name: Dot Recall
          - type: dot_ap
            value: 0.9720863676601571
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9285714285714286
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 16.630834579467773
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9431818181818182
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 19.740108489990234
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.9021739130434783
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9880952380952381
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9728353486982702
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9285714285714286
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 1.068155288696289
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9425287356321839
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 1.2433418035507202
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.9111111111111111
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9761904761904762
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9720863676601571
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9285714285714286
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 16.630834579467773
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9431818181818182
            name: Max F1
          - type: max_f1_threshold
            value: 19.740108489990234
            name: Max F1 Threshold
          - type: max_precision
            value: 0.9111111111111111
            name: Max Precision
          - type: max_recall
            value: 0.9880952380952381
            name: Max Recall
          - type: max_ap
            value: 0.9728353486982702
            name: Max Ap

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LeoChiuu/all-MiniLM-L6-v2")
# Run inference
sentences = [
    'Do you see your scarf in the watering can?',
    'Are these your footprints?',
    'Magic user',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9286
cosine_accuracy_threshold 0.4293
cosine_f1 0.9425
cosine_f1_threshold 0.227
cosine_precision 0.9111
cosine_recall 0.9762
cosine_ap 0.9721
dot_accuracy 0.9286
dot_accuracy_threshold 0.4293
dot_f1 0.9425
dot_f1_threshold 0.227
dot_precision 0.9111
dot_recall 0.9762
dot_ap 0.9721
manhattan_accuracy 0.9286
manhattan_accuracy_threshold 16.6308
manhattan_f1 0.9432
manhattan_f1_threshold 19.7401
manhattan_precision 0.9022
manhattan_recall 0.9881
manhattan_ap 0.9728
euclidean_accuracy 0.9286
euclidean_accuracy_threshold 1.0682
euclidean_f1 0.9425
euclidean_f1_threshold 1.2433
euclidean_precision 0.9111
euclidean_recall 0.9762
euclidean_ap 0.9721
max_accuracy 0.9286
max_accuracy_threshold 16.6308
max_f1 0.9432
max_f1_threshold 19.7401
max_precision 0.9111
max_recall 0.9881
max_ap 0.9728

Training Details

Training Dataset

Unnamed Dataset

  • Size: 560 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 3 tokens
    • mean: 7.2 tokens
    • max: 18 tokens
    • min: 3 tokens
    • mean: 7.26 tokens
    • max: 18 tokens
    • 0: ~36.07%
    • 1: ~63.93%
  • Samples:
    text1 text2 label
    When it was dinner Dinner time 1
    Did you cook chicken noodle last night? Did you make chicken noodle for dinner? 1
    Someone who can change item Someone who uses magic that turns something into something. 1
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 140 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 3 tokens
    • mean: 6.99 tokens
    • max: 18 tokens
    • min: 3 tokens
    • mean: 7.29 tokens
    • max: 18 tokens
    • 0: ~40.00%
    • 1: ~60.00%
  • Samples:
    text1 text2 label
    Let's check inside Let's search inside 1
    Sohpie, are you okay? Sophie Are you pressured? 0
    This wine glass is related. This sword looks important. 0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • learning_rate: 2e-05
  • num_train_epochs: 13
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 13
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss custom-arc-semantics-data_max_ap
None 0 - - 0.9254
1.0 70 2.9684 1.4087 0.9425
2.0 140 1.4461 1.0942 0.9629
3.0 210 0.6005 0.8398 0.9680
4.0 280 0.3021 0.7577 0.9703
5.0 350 0.2412 0.7216 0.9715
6.0 420 0.1816 0.7538 0.9722
7.0 490 0.1512 0.8049 0.9726
8.0 560 0.1208 0.7602 0.9726
9.0 630 0.0915 0.7286 0.9729
10.0 700 0.0553 0.7072 0.9729
11.0 770 0.0716 0.6984 0.9730
12.0 840 0.0297 0.7063 0.9725
13.0 910 0.0462 0.6997 0.9728

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}