Payload format for LeoLM/leo-mistral-hessianai-7b-chat Sagemaker Endpoint
#9
by
marlon89
- opened
Hello together,
I just deployed the LeoLM model as an sagemaker endpoint via the code snippets provided on the model page:
import json
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
# Hub Model configuration. https://huggingface.co/models
hub = {
'HF_MODEL_ID':'LeoLM/leo-mistral-hessianai-7b-chat',
'SM_NUM_GPUS': json.dumps(1)
}
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
image_uri=get_huggingface_llm_image_uri("huggingface",version="1.1.0"),
env=hub,
role=role,
)
# deploy model to SageMaker Inference
predictor = huggingface_model.deploy(
initial_instance_count=1,
instance_type="ml.g5.2xlarge",
container_startup_health_check_timeout=300,
)
# send request
predictor.predict({
"inputs": "My name is Julien and I like to",
})
When I make a prediction the response is super underwhelming which is because of the fact (i think) that I didn't pass any parameters or system prompts to the request. With Llama2 I can easily do it like:
prompt = "Tell me about Amazon SageMaker."
payload = {
"inputs": prompt,
"parameters": {
"do_sample": True,
"top_p": 0.9,
"temperature": 0.8,
"max_new_tokens": 1024,
"stop": ["<|endoftext|>", "</s>"]
}
}
response = predictor.predict(payload)
I havent found any specifications or hints how I shall structure my request to achieve this. Has anyone any idea?
Would be super helpful :slight_smile: