Leotrim's picture
End of training
ae092c5 verified
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87
          - name: Precision
            type: precision
            value: 0.8802816627816629
          - name: Recall
            type: recall
            value: 0.87
          - name: F1
            type: f1
            value: 0.8627110595989314

Visualize in Weights & Biases

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6501
  • Accuracy: 0.87
  • Precision: 0.8803
  • Recall: 0.87
  • F1: 0.8627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.1743 1.0 113 2.0604 0.38 0.5273 0.38 0.3101
1.6179 2.0 226 1.4299 0.62 0.6136 0.62 0.5877
1.0981 3.0 339 1.0223 0.79 0.8516 0.79 0.7669
0.9785 4.0 452 0.8722 0.71 0.7748 0.71 0.6733
0.8834 5.0 565 0.8363 0.76 0.7691 0.76 0.7449
0.4936 6.0 678 0.6241 0.82 0.8313 0.82 0.8193
0.2772 7.0 791 0.5648 0.85 0.8623 0.85 0.8459
0.1213 8.0 904 0.6919 0.81 0.8429 0.81 0.7997
0.0958 9.0 1017 0.5527 0.86 0.8682 0.86 0.8541
0.0194 10.0 1130 0.6840 0.85 0.8645 0.85 0.8420
0.0151 11.0 1243 0.6214 0.86 0.8642 0.86 0.8542
0.1239 12.0 1356 0.6501 0.87 0.8803 0.87 0.8627
0.0049 13.0 1469 0.6651 0.87 0.8803 0.87 0.8627
0.0043 14.0 1582 0.7188 0.87 0.8803 0.87 0.8627
0.0035 15.0 1695 0.6808 0.87 0.8803 0.87 0.8627

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1