Edit model card

bert-file-classifier-v1

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5040
  • Accuracy: 0.8621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 73 2.9232 0.2379
No log 2.0 146 2.3616 0.4103
No log 3.0 219 1.9274 0.5724
No log 4.0 292 1.6500 0.6793
No log 5.0 365 1.3585 0.7172
No log 6.0 438 1.1529 0.7448
1.8175 7.0 511 0.9884 0.7690
1.8175 8.0 584 0.8728 0.7966
1.8175 9.0 657 0.7990 0.7966
1.8175 10.0 730 0.7191 0.8379
1.8175 11.0 803 0.7060 0.8069
1.8175 12.0 876 0.6388 0.8207
1.8175 13.0 949 0.6215 0.8241
0.4201 14.0 1022 0.6104 0.8310
0.4201 15.0 1095 0.5726 0.8414
0.4201 16.0 1168 0.6273 0.8138
0.4201 17.0 1241 0.4878 0.8655
0.4201 18.0 1314 0.5040 0.8586
0.4201 19.0 1387 0.4873 0.8655
0.4201 20.0 1460 0.5066 0.8655
0.1063 21.0 1533 0.5139 0.8690
0.1063 22.0 1606 0.5060 0.8655
0.1063 23.0 1679 0.4933 0.8690
0.1063 24.0 1752 0.5140 0.8690
0.1063 25.0 1825 0.5040 0.8621

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
67M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Lesllie/bert-file-classifier-v1

Finetuned
(6681)
this model