LevonHakobyan's picture
End of training
3f94a2c verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: only_head_const_lr_1-e4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: hy-AM
          split: test
          args: hy-AM
        metrics:
          - name: Wer
            type: wer
            value: 0.9999698904010599

only_head_const_lr_1-e4

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7371
  • Wer: 1.0000
  • Cer: 0.8540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
9.1084 1.5385 500 9.3283 1.5175 0.7359
4.8706 3.0769 1000 5.0357 1.0044 0.8964
3.8282 4.6154 1500 3.8866 0.9999 0.9809
3.1519 6.1538 2000 3.1656 0.9998 0.9309
2.8747 7.6923 2500 2.8780 1.0002 0.8692
2.7465 9.2308 3000 2.7371 1.0000 0.8540

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1