metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: classifier-posterior-glare-removal
results: []
classifier-posterior-glare-removal
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the classifier_posterior_glare_removal_256_crop_s1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4990
- Accuracy: 0.8593
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.626 | 0.8065 | 50 | 0.5622 | 0.7582 |
0.4848 | 1.6129 | 100 | 0.5952 | 0.6675 |
0.2195 | 2.4194 | 150 | 0.5258 | 0.8325 |
0.1967 | 3.2258 | 200 | 0.5911 | 0.7960 |
0.2945 | 4.0323 | 250 | 0.4966 | 0.8300 |
0.1866 | 4.8387 | 300 | 0.5222 | 0.8350 |
0.1211 | 5.6452 | 350 | 0.5328 | 0.8426 |
0.1666 | 6.4516 | 400 | 0.5545 | 0.8426 |
0.0737 | 7.2581 | 450 | 0.5327 | 0.8526 |
0.0314 | 8.0645 | 500 | 0.5208 | 0.8526 |
0.0329 | 8.8710 | 550 | 0.5773 | 0.8489 |
0.0497 | 9.6774 | 600 | 0.5994 | 0.8489 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1