G0513HMA13H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1208
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.176 | 0.09 | 10 | 2.8574 |
2.5328 | 0.18 | 20 | 1.9974 |
1.565 | 0.27 | 30 | 1.0504 |
0.6963 | 0.36 | 40 | 0.3207 |
0.2309 | 0.45 | 50 | 0.1631 |
0.16 | 0.54 | 60 | 0.1553 |
0.1519 | 0.63 | 70 | 0.1502 |
0.1522 | 0.73 | 80 | 0.1492 |
0.1429 | 0.82 | 90 | 0.1484 |
0.1466 | 0.91 | 100 | 0.1475 |
0.1493 | 1.0 | 110 | 0.1487 |
0.1438 | 1.09 | 120 | 0.1485 |
0.1439 | 1.18 | 130 | 0.1493 |
0.1469 | 1.27 | 140 | 0.1458 |
0.1486 | 1.36 | 150 | 0.1463 |
0.1421 | 1.45 | 160 | 0.1488 |
0.1422 | 1.54 | 170 | 0.1427 |
0.1429 | 1.63 | 180 | 0.1420 |
0.1444 | 1.72 | 190 | 0.1450 |
0.1397 | 1.81 | 200 | 0.1367 |
0.1384 | 1.9 | 210 | 0.1354 |
0.1333 | 1.99 | 220 | 0.1276 |
0.128 | 2.08 | 230 | 0.1275 |
0.125 | 2.18 | 240 | 0.1252 |
0.1209 | 2.27 | 250 | 0.1247 |
0.1267 | 2.36 | 260 | 0.1240 |
0.1252 | 2.45 | 270 | 0.1241 |
0.1204 | 2.54 | 280 | 0.1229 |
0.1183 | 2.63 | 290 | 0.1215 |
0.1171 | 2.72 | 300 | 0.1217 |
0.1212 | 2.81 | 310 | 0.1211 |
0.1204 | 2.9 | 320 | 0.1208 |
0.1184 | 2.99 | 330 | 0.1208 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0513HMA13H
Base model
google/gemma-2b