O0428B2
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8141 | 0.09 | 10 | 2.3918 |
2.3705 | 0.18 | 20 | 2.2984 |
2.1425 | 0.27 | 30 | 1.8693 |
1.5052 | 0.36 | 40 | 0.9945 |
0.6052 | 0.45 | 50 | 0.2390 |
0.2304 | 0.54 | 60 | 0.1544 |
0.1666 | 0.63 | 70 | 0.1506 |
0.1633 | 0.73 | 80 | 0.1514 |
0.1444 | 0.82 | 90 | 0.1481 |
0.1551 | 0.91 | 100 | 0.1476 |
0.1575 | 1.0 | 110 | 0.1517 |
0.1455 | 1.09 | 120 | 0.1483 |
0.1724 | 1.18 | 130 | 0.1493 |
0.1558 | 1.27 | 140 | 0.1484 |
0.1604 | 1.36 | 150 | 0.1473 |
0.1432 | 1.45 | 160 | 0.1488 |
0.1446 | 1.54 | 170 | 0.1467 |
0.1463 | 1.63 | 180 | 0.1470 |
0.1554 | 1.72 | 190 | 0.1506 |
0.1595 | 1.81 | 200 | 0.1480 |
0.1462 | 1.9 | 210 | 0.1475 |
0.1449 | 1.99 | 220 | 0.1494 |
0.1464 | 2.08 | 230 | 0.1473 |
0.1671 | 2.18 | 240 | 0.1473 |
0.1437 | 2.27 | 250 | 0.1472 |
0.1448 | 2.36 | 260 | 0.1478 |
0.1508 | 2.45 | 270 | 0.1477 |
0.152 | 2.54 | 280 | 0.1475 |
0.1547 | 2.63 | 290 | 0.1476 |
0.1447 | 2.72 | 300 | 0.1474 |
0.1448 | 2.81 | 310 | 0.1472 |
0.1646 | 2.9 | 320 | 0.1472 |
0.1567 | 2.99 | 330 | 0.1472 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0428B2
Base model
allenai/OLMo-1B