O0430HMA11
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0488
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8065 | 0.09 | 10 | 0.2263 |
0.1808 | 0.18 | 20 | 0.1533 |
0.1504 | 0.27 | 30 | 0.1703 |
0.1539 | 0.36 | 40 | 0.1510 |
0.1512 | 0.45 | 50 | 0.1499 |
0.1501 | 0.54 | 60 | 0.1405 |
0.147 | 0.63 | 70 | 0.1753 |
0.1464 | 0.73 | 80 | 0.1267 |
0.0872 | 0.82 | 90 | 0.0932 |
0.0774 | 0.91 | 100 | 0.0758 |
0.2628 | 1.0 | 110 | 1.3590 |
2.7529 | 1.09 | 120 | 1.8422 |
0.9754 | 1.18 | 130 | 0.4673 |
0.4054 | 1.27 | 140 | 0.3541 |
0.3357 | 1.36 | 150 | 0.2889 |
0.1804 | 1.45 | 160 | 0.1196 |
0.1405 | 1.54 | 170 | 0.1951 |
0.167 | 1.63 | 180 | 0.0872 |
0.0958 | 1.72 | 190 | 0.0867 |
0.0841 | 1.81 | 200 | 0.0904 |
0.0816 | 1.9 | 210 | 0.0862 |
0.0803 | 1.99 | 220 | 0.0776 |
0.0764 | 2.08 | 230 | 0.0763 |
0.0722 | 2.18 | 240 | 0.0770 |
0.0699 | 2.27 | 250 | 0.0731 |
0.0702 | 2.36 | 260 | 0.0677 |
0.0624 | 2.45 | 270 | 0.0621 |
0.0539 | 2.54 | 280 | 0.0573 |
0.054 | 2.63 | 290 | 0.0551 |
0.0542 | 2.72 | 300 | 0.0513 |
0.0495 | 2.81 | 310 | 0.0492 |
0.0485 | 2.9 | 320 | 0.0494 |
0.0497 | 2.99 | 330 | 0.0488 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA11
Base model
allenai/OLMo-1B