O0430HMA12
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1479
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6319 | 0.09 | 10 | 0.2184 |
0.1689 | 0.18 | 20 | 0.1562 |
0.1513 | 0.27 | 30 | 0.1703 |
0.1575 | 0.36 | 40 | 0.1539 |
0.1493 | 0.45 | 50 | 0.1497 |
0.1519 | 0.54 | 60 | 0.1494 |
0.1496 | 0.63 | 70 | 0.1476 |
0.1505 | 0.73 | 80 | 0.1567 |
0.1468 | 0.82 | 90 | 0.1489 |
0.1499 | 0.91 | 100 | 0.1617 |
0.5273 | 1.0 | 110 | 0.2818 |
0.7382 | 1.09 | 120 | 2.3484 |
0.6571 | 1.18 | 130 | 2.4284 |
0.6879 | 1.27 | 140 | 0.2094 |
0.2489 | 1.36 | 150 | 0.3516 |
0.2044 | 1.45 | 160 | 0.1858 |
0.2676 | 1.54 | 170 | 0.1697 |
0.1671 | 1.63 | 180 | 0.1629 |
0.1591 | 1.72 | 190 | 0.1540 |
0.155 | 1.81 | 200 | 0.1663 |
0.1546 | 1.9 | 210 | 0.1532 |
0.1539 | 1.99 | 220 | 0.1554 |
0.1522 | 2.08 | 230 | 0.1588 |
0.1519 | 2.18 | 240 | 0.1513 |
0.1477 | 2.27 | 250 | 0.1521 |
0.1492 | 2.36 | 260 | 0.1498 |
0.1471 | 2.45 | 270 | 0.1498 |
0.1448 | 2.54 | 280 | 0.1482 |
0.1452 | 2.63 | 290 | 0.1500 |
0.1488 | 2.72 | 300 | 0.1476 |
0.1476 | 2.81 | 310 | 0.1478 |
0.1472 | 2.9 | 320 | 0.1478 |
0.1478 | 2.99 | 330 | 0.1479 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0430HMA12
Base model
allenai/OLMo-1B