metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA23
results: []
Phi0503HMA23
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0717
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.2718 | 0.09 | 10 | 0.6833 |
0.3393 | 0.18 | 20 | 0.2266 |
0.2573 | 0.27 | 30 | 0.2267 |
0.2236 | 0.36 | 40 | 0.2029 |
0.2141 | 0.45 | 50 | 0.2326 |
0.2251 | 0.54 | 60 | 0.2256 |
0.1965 | 0.63 | 70 | 0.1851 |
0.196 | 0.73 | 80 | 0.1693 |
0.1665 | 0.82 | 90 | 0.1641 |
0.1427 | 0.91 | 100 | 0.1232 |
0.1133 | 1.0 | 110 | 0.0969 |
0.0833 | 1.09 | 120 | 0.0825 |
0.0777 | 1.18 | 130 | 0.1040 |
0.4 | 1.27 | 140 | 0.0785 |
0.0787 | 1.36 | 150 | 0.0768 |
0.076 | 1.45 | 160 | 0.0766 |
0.0712 | 1.54 | 170 | 0.0717 |
0.0668 | 1.63 | 180 | 0.0696 |
0.0668 | 1.72 | 190 | 0.0650 |
0.0712 | 1.81 | 200 | 0.0673 |
0.0649 | 1.9 | 210 | 0.0688 |
0.0624 | 1.99 | 220 | 0.0643 |
0.0338 | 2.08 | 230 | 0.0756 |
0.0329 | 2.18 | 240 | 0.0983 |
0.0312 | 2.27 | 250 | 0.0859 |
0.031 | 2.36 | 260 | 0.0770 |
0.0371 | 2.45 | 270 | 0.0734 |
0.0303 | 2.54 | 280 | 0.0735 |
0.0292 | 2.63 | 290 | 0.0740 |
0.0352 | 2.72 | 300 | 0.0732 |
0.0382 | 2.81 | 310 | 0.0725 |
0.033 | 2.9 | 320 | 0.0719 |
0.0313 | 2.99 | 330 | 0.0717 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0