V0224O6
This model is a fine-tuned version of yahma/llama-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.6447 | 0.13 | 10 | 1.4566 |
1.2061 | 0.26 | 20 | 1.0457 |
0.9697 | 0.39 | 30 | 0.9203 |
0.886 | 0.52 | 40 | 0.8718 |
0.8551 | 0.65 | 50 | 0.8451 |
0.8331 | 0.78 | 60 | 0.8318 |
0.8039 | 0.91 | 70 | 0.8185 |
0.7933 | 1.04 | 80 | 0.8085 |
0.7671 | 1.17 | 90 | 0.7974 |
0.8402 | 1.3 | 100 | 0.8482 |
0.8164 | 1.43 | 110 | 0.8232 |
0.7921 | 1.55 | 120 | 0.8089 |
0.7737 | 1.68 | 130 | 0.8011 |
0.781 | 1.81 | 140 | 0.7938 |
0.7813 | 1.94 | 150 | 0.7884 |
0.7593 | 2.07 | 160 | 0.7864 |
0.7421 | 2.2 | 170 | 0.7839 |
0.7537 | 2.33 | 180 | 0.7823 |
0.7443 | 2.46 | 190 | 0.7813 |
0.7452 | 2.59 | 200 | 0.7809 |
0.7487 | 2.72 | 210 | 0.7804 |
0.7454 | 2.85 | 220 | 0.7802 |
0.7472 | 2.98 | 230 | 0.7801 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/V0224O6
Base model
yahma/llama-7b-hf